deck_1141064 Flashcards

1
Q

Evolution

A

Changes in the genetic make-up of populations of a species over generations.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Factors that cause evolution.

A
  • Natural selection- Gene flow- Genetic drift- Bottlenecking- Non-random mating
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Use and disuse

A

Belief that the environment modifies traits.E.g., a giraffe’s neck lengthens due to it stretching to reach leaves.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Inheritance of acquired traits

A

Belief that acquired traits are passed on to offspring.E.g., the aforementioned giraffe passes on this trait to its offspring.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Gene flow

A

The mixing of genes through immigration and emigration.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Genetic drift

A

When random changes occur in the genetic make-up of a population. Most significant in small populations.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Bottlenecking

A

When the original population has genetic diversity, but an event causes similar groups to be wiped out. The remaining population is very homogenous.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Non-random mating

A

Occurs through:- Inbreeding- Sexual selection

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Hierarchy of biological order

A
  • Atoms- Molecules- Organelles- Cells- Tissue- Organ- Organ System- Organism
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Atom (e.g.)

A

Oxygen atom

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Molecule (e.g.)

A

DNA

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Organelles (e.g.)

A

Cell nucleus

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Cells (e.g.)

A

Cardiac muscle cell

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Tissue (e.g.)

A

Cardiac muscle tissue

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Organ (e.g.)

A

Heart

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Organ system (e.g.)

A

Circulatory system

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Organism (e.g.)

A

Zebra

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

What are the smallest units of life?

A

Cells

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Scientific method

A
  • Observations- Question- Hypothesis- Prediction- Test (experiment or additional observation)If correct, retest. If incorrect, revise or replace hypothesis.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Charles Darwin

A

Discovered the mechanism for evolution and developed the theory of evolution through natural selection.- Carapace shape in Galapagos tortoises- Marine iguanas adapted to eat algae- The Origin of Species- A. Wallace developed same theory

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Darwinian evolution

A

A gradual change in populations over time as a result of natural selection.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Species survival relies on the abilities to…

A
  • Obtain resources- Survive- Reproduce
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Modern synthesis of evolution

A
  1. Individuals that make up a population are not identical.2. Some of this variability is heritable, passing in genes.3. In most generations, more offspring are produced than can survive.4. Survival and reproduction are not random effects, but those best able to obtain resources, survive, and reproduce will pass on their genes.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Other causes of evolution

A
  • Gene flow- Genetic drift- Bottlenecking- Non-random mating
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

Gene flow

A

The mixing of genes through immigration and emigration.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

Genetic drift

A

Random changes in the genetic make-up of a population over time. These are most significant in small populations. E.g., eye color in people.Types:- Population bottleneck- Founder effect

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

Founder effect

A

When a small population of a colony breaks off and the genetic diversity of this smaller colony is much more homogeneous, misrepresenting its founder.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

Non-random mating

A
  • Inbreeding- Sexual selection
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

Microevolution

A

Evolution that does not result in a new species, but changes the genetic make-up of existing populations. - Most common

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

Macroevolution

A

Evolution that results in a new species. - Rare, requires special circumstances and a significant amount of time. - Also called “speciation.”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

Artificial selection

A

Done by humans. E.g., crops and domestic animals.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

5 Kingdoms

A
  • Plantae (eukaryotes)- Fungi (eukaryotes)- Animalia (eukaryotes)- Protista (eukaryotes)- Monera (prokaryotes)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

Spontaneous generation

A

Incorrect hypothesis that life originated from non-living things.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

Biogenesis

A

Synthesis of organic compounds from inorganic precursors.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

Inorganic compounds

A

Do not possess a carbon skeleton. May possess one carbon atom.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
36
Q

Louis Pasteur

A

Conducted experiments to show that life comes from life, supporting his biogenesis hypothesis. - Chicken broth in flasks with straw

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
37
Q

The first life form was…

A

Anaerobic and prokaryotic

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
38
Q

Protobiont

A

Abiotically formed cell.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
39
Q

Hypothetical steps to formation of the first cell

A
  1. Assemble simple molecules into building blocks for complex polymers2. Assemble polymers that can store information and catalyze reactions.3. Add membranes and an energy source to make a living organism.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
40
Q

Phospholipids

A

Form vesicles in water.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
41
Q

Organic compounds found in cells

A
  • Proteins (amino acids)- Sugars- Fats- Genetic material (DNA/RNA)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
42
Q

Ribozyme

A

RNA molecule that was likely the first molecule to carry genetic information, replicate itself, and speed up chemical reactions.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
43
Q

Steps to abiotically formed cells

A
  1. Spontaneous formation of lipids, carbs, amino acids, proteins, and nucleotides.2. Formation of protein-RNA systems and lipid spheres.3. Self-replicating system enclosed in selectively permeable, protective lipid sphere.4. Membrane-bound protobionts5. Living cells (prokaryotic and eukaryotic)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
44
Q

History of life on Earth summarized

A
  1. Abiotic synthesis of small, organic molecules.2. Joining of molecules into polymers (chains of organic molecules)3. Origin of self-replicating molecules as genetic material.4. Packing of these molecules into protobionts, formed by many abiotically produced molecules.5. First cells anaerobic and prokaryotic, followed by aerobic and photosynthetic prokaryotic cells.6. Eukaryotic cells are formed, initially single-celled and then multicellular.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
45
Q

Prokaryotic cell structure

A
  • No interior membrane for nucleus- May have flagella for locomotion- Pili for grip- Gelatinous outer capsule - Cell wall - Plasma membrane - Cytoplasm - Nucleoid + Contains genetic material - Plasmid + Carries resistance to antibiotics - Ribosomes
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
46
Q

Prokaryote shapes

A
  • Bacilli- Cocci- Spirochetes
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
47
Q

Bacilli

A

Rod shaped

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
48
Q

Cocci

A

Spherical

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
49
Q

Spirochetes

A

Spiral shaped

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
50
Q

Prokaryote

A

Single-celled (usually) organism that has neither a distinct nucleus with a membrane nor other specialized organelles such as mitochondria or chloroplasts.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
51
Q

In what order did prokaryotes and eukaryotes evolve?

A
  1. Heterotrophic prokaryotes2. Autotrophic prokaryotes (photosynthesis) a) Do not possess chloroplasts but may possess chlorophyll.3. Aerobic respiration4. Unicellular eukaryotes5. Multicellular eukaryotes
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
52
Q

Endosymbiotic theory

A

Origin of eukaryotic cells: - Ancestral prokatyote’s plasma membrane unfolds to form the endoplasmic reticulum and nucleus.- This cell then engulfed aerobic heterotrophic prokaryote cells which developed into mitochondria. + These cells became heterotrophic eukaryotes. - Animals and fungi today.- Some of the cells also engulfed autotrophic prokaryote cells which developed into plastids, or chloroplasts. + These cells became photosynthetic eukaryotes. - Plants and algae today.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
53
Q

Eukaryotic cell structure

A
  • Contains a nucleus with DNA as well as mitochondria and other organelles. + These organelles are membrane-bound.- Autotrophic eukaryotes will also possess plastids, or chloroplasts.- Contains a plasma membrane, cytoplasm, and other structures found in prokaryotes.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
54
Q

Monera

A

Prokaryotes- Bacteria- Archaea

55
Q

Protista

A

Eukaryotes, mostly unicellular

56
Q

Classification of life

A
  • Domain + (Eu)bacteria, archaea, eukarya- Kingdom + Monera, protista, plantae, fungi, animalia- Phylum- Class- Order- Family- Genus- SpeciesMany biologists believe that kingdoms Monera and Prostista should be split into multiple kingdoms for different varieties of each.
57
Q

Taxonomy

A

The study of species identification.

58
Q

Binomial nomenclature

A

Invented by Linnaeus. Capitalized genus, lowercase species. Name must be underlined or italicized.

59
Q

Archaea

A

Domain of unicellular microorganisms that lack a nucleus or membrane-bound organelles. Similar to bacteria but possess a few different qualities and evolved differently as well. - Thermophiles - Halophiles - Methanogens

60
Q

Thermophiles

A

Heat-loving prokaryotes

61
Q

Halophiles

A

Salt-loving prokaryotes

62
Q

Methanogens

A

Methane-producing prokaryotes

63
Q

Why is bacteria dangerous?

A

A bacteria cell’s metabolism allows it to release toxins.

64
Q

What are the most common prokaryotes?

A

Bacteria

65
Q

Autotrophs

A

Produce their own organic compounds from carbon dioxide. - Phototrophs - Chemotrophs

66
Q

Phototrophs

A

Use light energy to produce chemical energy (ATP) to be used by the cell. - E.g., cyanobacteria.

67
Q

Chemetrophs

A

Use energy from inorganic chemicals to produce chemical energy (ATP) to be used by the cell. - E.g., purple sulfur bacteria.

68
Q

Heterotrophs

A

Must consume organic molecules for energy and as a source of carbon to produce their own organic molecules.

69
Q

Oxygen requirements

A
  • Obligate aerobes- Facultative aerobes- Anaerobes
70
Q

Obligate aerobes

A

Microorganisms that require oxygen to perform cellular respiration and cannot grow without it.

71
Q

Facultative aerobes

A

Microorganisms that grow in the presence of oxygen but will switch to anaerobe mode in the absence of oxygen.

72
Q

Anaerobes

A

Microorganisms that do not require oxygen to produce chemical energy (ATP). - May die when exposed to oxygen.

73
Q

Conjugation

A

Sexual reproduction in bacteria, accomplished by cell to cell contact or a bridge-like connection between cells to exchange DNA.

74
Q

(Eu)bacteria

A

Major ecological roles:- Symbiosis + Mutualism + Commensalism + Parasitism/Pathogens- Photoautotrophs + Cyanobacteria- Decomposers + Break down organic molecules and recycle nutrients.

75
Q

In eukaryotes, DNA is always found in the…

A

Nucleus

76
Q

Regarding their chromosomes, eukaryote cells may be either…

A

Haploid or diploid

77
Q

Haploid (n)

A

A cell with unpaired chromosomes, regardless of the number of chromosomes it has.

78
Q

Diploid (2n)

A

A cell with paired chromosomes.

79
Q

Mitosis

A

Process in which one cell splits to form two identical cells. - Haploid cell will produce 2 haploid cells and diploid cell will produce 2 diploid cells.

80
Q

Cytokenesis

A

Process in which the cytoplasm of a single eukaryotic cell is divided to form two daughter cells. It usually initiates during the late stages of mitosis or meiosis to ensure that chromosome number is maintained from one generation to the next.

81
Q

The cell wall of plants differs from other eukaryotes in that it is made of…

A

Cellulose

82
Q

The only haploid cells in the human body are..

A

Sperm and egg

83
Q

Meiosis

A

Necessarily for the reproduction of eukaryotes. Enables a diploid cell to split into 4 haploid daughter cells.

84
Q

Types of sexual reproduction

A
  • Isogamy- Anisogamy- Oogamy
85
Q

Isogamy

A

Similar motile gametes

86
Q

Anisogamy

A

Dissimilar motile gametes

87
Q

Oogamy

A

One large, motile gamete (egg) and a smaller motile gamete (sperm).

88
Q

Reproductive life cycle of Laminaria (unicellular green algae)

A
  • Mature algae is a 2n sporophyte. Contains sporangia that undergo meiosis to create haploid zoospores. - These zoospores develop into gametophytes that are either male or female, and come together as sperm and egg to create a 2n zygote that continues to be supported by its haploid female half.- This zygote matures into a new sporophyte.- Oogamy reproduction
89
Q

Meiotic types

A
  • Zygotic- Gametic- Sporic
90
Q

Zygotic

A

Zygote (2n) undergoes meiosis to form 4 cells (n) - Used by most fungi and some algae.

91
Q

Gametic

A

Organism (2n) undergoes meiosis to form 4 gametes (n)- Used by animals

92
Q

Characteristics of Kingdom Protista

A
  • Mostly unicellular, filamentous, colonial and multicellular organisms (with simple structure), eukaryotic cells- Polyphyletic origin, meaning that have distinct origins and are unrelated.
93
Q

Protists are grouped by…

A

Ecological role

94
Q

Ecological roles of protists

A
  • Producer (autotrophic/plant-like)- Consumer (heterotrophic/animal-like)- Both
95
Q

Autotrophic protists

A
  • Phylum Crysophyta- Phylum Phaeophyta- Phylum Rhodophyta- Phylum Chlorophyta
96
Q

Phylum Crysophyta

A

“Golden brown algae”- Diatoms are found in this phylum- Mostly unicellular or colonial- Chlorophyll A & C plus other pigments- Cell wall made of cellulose or pectin

97
Q

Diatoms

A
  • Unicellular or colonial- Chlorophyll A & C plus other pigments- Cell wall made of silica or pectin- Limited locomotion- Significant source of oxygen- Great diversity of shells- Make up diatomaceous earth
98
Q

Phylum Phaeophyta

A

“Brown algae”- Kelp and sargassum found in this phylum- Mostly multicellular- Chlorophyll A & C plus other pigments- Structure: holdfast (roots it), stipe (stem), frond (leaf division), vessel cells

99
Q

Phylum Rhodophyta

A

“Red algae”- Mostly multicellular- Chlorophyll A & D and deep water pigments- Lack flagella- Cell walls of cellulose (deposits of calcium carbonate)- Coralline algae (looks like coral)/calcareous- Extracts: carragean and agar

100
Q

Phylum Chlorophyta

A

“Green algae”- Unicellular, colonial or multicellular- Chlorophyll A & B- Cell wall: celluse and pectin- Locomotion: flagella- Ancestor of land plants- Chlamydomonas (unicellular), Volvox (colonial), and Ulva (multicellular), Caulerpa

101
Q

Mixotrophic (autotrophic/heterotrophic) protists

A
  • Phylum Euglenophyta- Phylum DinoflagellataFeed through photosynthesis as well as on other organisms.
102
Q

Phylum Euglenophyta

A
  • Mostly unicellular- When present, chlorophylls A & B- 2 flagella- Lack cell wall- Stigma (eyespot) + Used for light detection- Euglena genus belongs to this phylum
103
Q

Phylum Dinoflagellata

A
  • Unicellular- Possess 2 flagellum- When present, chlorophylls A & C and other pigments- Cellulose cell wall- Bioluminescent- Responsible for red tide and other toxins- Includes Pfiesteria (flesh eating bacteria) and zooxanthellae
104
Q

Heterotrophic protists

A
  • Kingdom Diplomonadida (animal-like)- Kingdom Parabasalia (animal-like)- Phylum Choanoflagellida (animal-like)- Phylum Kinetoplastida (animal-like)- Phylum Apicomplexa (animal-like)- Phylum Ciliophora (animal-like)- Phylum Rhizopoda (animal-like)- Phylum Actinopoda (animal-like)- Phylum Foraminifera (animal-like)- Phylum Oomycota (fungus-like)- Phylum Myxogastrida (fungus-like)- Phylum Dictyostelida (fungus-like)
105
Q

Protozoans

A

Heterotrophic protists

106
Q

Kingdom Diplomonadida

A
  • Mostly parasites of guts- Unicellular- Multiple flagella- No plastids- No mitochondria- E.g., Giaridia lamblia (internal parasite)
107
Q

Kingdom Parabasalia

A
  • Mostly parasites or commensals of guts- Unicellular- No mitochondria- Multiple flagella- E.g., trichomonas vaginalis
108
Q

Phylum Choanoflagellida

A
  • Unicellular or colonial- Single flagellum encircled by collar- Feeds by creating a current with its flagellum to bring food into its collar.- May have given origin to animals
109
Q

Phylum Kinetoplastida

A
  • Contain a “kinetoplast” + Kinetoplast contains extra nuclear DNA- Single, large mitochondrium- Unicellular- Possess flagella- Symbiotic or pathogenic + Trypanosoma (African sleeping sickness, transmitted by the tse tse fly through protists in the bloodstream) + Chagas disease (bugs in mud houses) + Leishmania (feeds on cartilage)
110
Q

Phylum Apicomplexa

A
  • All species are parasites- Non-motile adults- Malaria + Main symptom is fever + Caused by mosquito (Plasmodium sp.) which occurs in 3 stages: - Sporozoite - Merozoite (in the liver, Cryoptozoite) - Gametocyte
111
Q

Oocyst

A

A cyst containing a zygote formed by a parasitic protozoan such as the malaria parasite.

112
Q

Phylum Ciliphora

A
  • Unicellular- Surface covered by cilia- Specialized organelles + Contractive vacuoles + Complex cytoskeleton- Mostly free-living (not a pathogen/parasite)- Two types of nuclei + Macronucleus - Chromosomes found here + Micronucleus - DNA for sexual reproduction found here- Use binary fusion for reproduction- E.g., Parameciums & Ciliates + Parameciums feed on anything smaller than them and release waste into surrounding water.
113
Q

Phylum Rhizopoda

A

“Amoeba”- Unicellular- No shell- Contain pseudopods + Lobed expansions of the body used for locomotion and feeding- Free-living or parasitic- E.g., Amoebas and Vampyrella

114
Q

Phylum Actinopoda

A

“Amoeba-like with silica shells”- Unicellular- Contain actinipods + Ray-like pseudopods- Typically plankton- E.g., Heliozoans and Radiolarians- Covered in holes

115
Q

Phylum Foraminifera

A

“Amoeba-like with calcium shells”- Unicellular- Chambered porous shells- Similar to Actinopoda but with chambers instead of holes

116
Q

Phylum Oomycota

A

“Water and slime molds”- Commonly known as “blights”- Marine, freshwater, and terrestrial (require water)- Reproduce asexually and sexually- Reproduce through zoospores

117
Q

Zoospores

A

Flagellated spores

118
Q

Life cycle of Oomycota

A

Asexual:- Completely diploid- Zoospore develops into a cyst- Cysts develops germ tube- This forms into a zoosporangium- Zoosporangium releases new zoosporesSexual:- Release of zoospores from zoosporangium- 2n zoospores undergo meiosis to create egg nucleus and sperm nuclei, contained in the oogonium.- Fertilization occurs and 2n zygotes, called oospores, are released from the oogonium.- Zygote germination occurs and oospores develop into zoosporangium.- Release of zoospores from zoosporangium

119
Q

Zoosporangium

A

A sporangium or spore case in which zoospores develop.

120
Q

Oogonium

A

Contains egg nucleus and sperm nuclei of Oomycota

121
Q

Oospores

A

Created by sexual reproduction of Oomycota

122
Q

Phylum Myxogastrida

A

“Plasmodial slime mold”- Plasmodium (2n) + Single mass of cytoplasm with several nuclei with amoeboid movement (no cell wall)- Reproduction + Sporangium with spores (n)- Terrestrial- Locomotion: pseudopodia

123
Q

Plasmodium

A

Single large cell with hundreds of nuclei that are all connected. - Grows sporangia in the absence of food or water. + Sporangia are reproductive structures that may release spores.

124
Q

Life cycle of Physarum (plasmodial slime mold)

A
  • Mature plasmodium develops young sporangium.- Sporangium matures and mature sporangium has a stalk. Undergoes meiosis to release (n) spores.- Spores germinate and develop into either a flagellated cell or amoebic cell.- Cells reproduce, but only flagellated with flagellates and amoebic with amoebic.- Both result in a 2n zygote.- Zygotes undergo mitotis to form a larger, feeding plasmodium.- Feeding plasmodium develops into mature plasmodium, able to fruit.
125
Q

Phylum Dictyostelida

A

“Cellular slime mold”- Contain pseudoplasmodium + Similar to plasmodium but there is separation between cells.- Locomotion: pseudopodia- Sporangium- Utilize cAMP- Cell wall made of cellulose- May form multicellular colonies in the absence of food.- Colony grows “fruiting bodies” for the release of spores.

126
Q

Life cycle of Dictyostelida (cellular slime mold)

A

Asexual (completely n):- Solitary (feeding stage) amoeba cells aggregate (come together to form a whole)- Aggregate cells develop into migrating colony- Colony develops stalks with bulbs on the end called “fruiting bodies”- Fruiting bodies release spores- Solitary amoebas emerge from sporesSexual:- Amoebas (n) released from zygote (2n) through meiosis- Amoebas aggregate- Amoebas fertilize one another to create new zygote

127
Q

Feeding of fungus-like amoebas

A

Release enzymes outside of the body onto food source. Digestion takes place outside of the body and is then absorbed.

128
Q

Three types of locomotion for heterotrophs

A
  • Pseudopodia- Flagellum- Cilium
129
Q

Syngamy

A

The fusion of two cells, or of their nuclei, in reproduction.

130
Q

Pseudopodia

A

Cellular extensions used to move and feed.- Protists with these are usually amoebas.- Two types + Lobed - Short, bulbous lobes, typical of amoebas. - Called “lobopodia” - Found in Rhizopoda and Sarcodina + Thin - Long, thin pseudopods - Called “axopodia” or “actinopodia” - Found in Radiolaria and Heliozoa

131
Q

Flagellum

A

Whip-like tail(s) for locomotion. - Microorganisms with flagellum are called “flagellates.”

132
Q

Cilium

A

Short, hair-like extensions used for feeding and locomotion. - Microorganisms that have cilium are called “ciliates.”

133
Q

How do slime molds feed?

A

Fungus-like feeding mechanism