Data Science - MODULE5 Code Flashcards

1
Q

Die library vir die mean squared error

A

From sklearn.metrics import mean_squared_error

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Die kode om n regressor op te stel met n sekere mate van regularisation?

A

Reg = MLPRegressor(max_iter=6000, hidden_layer_sizes=(5,5), alpha=param, random_state=1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

As jy deur die verskillende alohas hardloop, hoe bepaal jy die score en stoor dit?

A

Score = cross_val_score(estimator=reg, X=X_train, y=y_train, CV=3, scoring=”neg_mean_squared_error”)
Validation_scores[param]=-score.mean()

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Commercial software wat baie maatskappye gebruik vir AI

A

RapidMiner

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

In die voorbeeld wat ons gedoen - n ander metode as stochastic gradient descent?

A

Lbfgs solver

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Nuwe import, onseker waar dit gebruik gaan word

A

Import itertools

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Ek dink j het dit al, maar kom ons se daar is n dataframe met ? As daar nie n waarde is nie, hoe drop ju daardie waardes?

A

Df = df.replace(“?”, np.nan)
Df = df.dropna()

How well did you know this?
1
Not at all
2
3
4
5
Perfectly