Data Science MODULE 5 Flashcards

1
Q

In machine learning we describe the learning of the target function from training data as

A

Inductive learning

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

What is feature selection?

A

Methods, employed to reduce the amount of input variables to those that are believed to be most useful to a model

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Unsupervised feature selection?

A

Ignores the target variable

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Supervised feature selection

A

Use the target variable in the selection process

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Wrapper feature selection

A

Gaan basies en gebruik verskillende inputs, uit jou data, om die beste fit te bepaal

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Filter feature selection

A

Soos ek dit sien, basies korrelasies tussen individuele features en die response. Die bestes word gebruik om die model te train

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Derde tipe feature selection?

A

Hulle noem dit intrinsic - so n tree based model is baie goeie voorbeeld van dit

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Is dimensionality reduction n feature selection metode?

A

Eintlik nie, want nuwe features word eintlik geskep, vanaf die oorspronklike inputs

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Drie tipe categorical data

A

Nominal (r,g,b)
Ordinal (1st, 2nd, 3rd)
Boolean (true and false)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Filter feature selection
Numeries - numeries

A

Pearson
Spearman

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Filter feature selection
Numeries - kategoriee

A

Anova
Kendall

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Filter feature selection
Kategoriee Kategoriee

A

Chi-squared
Mutual info

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Verskil tussen Pearson en Spearman?

A

Pearson vir lineer
Spearman vir nie-lineer

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Verskil tussen Anova en Kendal

A

Anova - lineer
Kendall - nie lineer

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Scikit libraries vir:
Pearson
ANOVA
Chi squared
Mutual info

A

f_regression()
f_classif()
chi2()
mutual_info_classif() en mutual_info_regression()

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Libraries in SciPy

A

kendaltau
spearmanr

17
Q

Selection methods in python

A

SelectKBest
SelectPercentile

18
Q

Using regularisation to constrain a neural network amounts to modifying the

A

Objective function by adding a penalty term?

19
Q

So in baie eenvoudige terme, wat is regularisation?

A

Wanneer die weights te groot raak, word dit gepenaliseer

20
Q

Hoe word die mate van regularisation beheer?

A

Met n scaling factor - lambda

21
Q

L1 regularisation?

A

Is geneig om weights na nil toe te vat, en konneksies te breek

22
Q

L2 regularisation staan ook bekend as?

A

Weight decay
Groot gewigte word meer gepenaliseer as kleiner gewigte
Hoe groter die faktor is, hoe nader sal die gewigte beweeg aan nil

23
Q

Tussen L1 en L2, watter een is computationally meer effektief?

A

L2

24
Q

L1 is nie ondersteun deur die MLPRegressor nie

A

Korrek, gebruik sknn.mlp as jy dit nodig kry

25
Q

So met cross validation, en neurale netwerke, watter hyperparameter word verander?

A

Lamda, of ook dan bekend as die scaling factor