Data Science - MODULE 1 Flashcards

1
Q

Data science is where three domains meet?

A
  1. Applied mathematics and statistics
  2. Domain knowledge
  3. Computer science
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Die 4 hoof libraries wat ons gaan gebruik

A

Numpy
Pandas
Scikit-learn
Matplotlib

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

When do we use statistical learning?

A

When the pattern cannot be observed directly

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Inputs are commonly referred to as?

A

Predictors or features

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Outputs are also called?

A

Responses

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Three spheres of statistical learning? Which ones will we deal with?

A

Supervised, unsupervised, semi-supervised.
We will work with the first two

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Die doel van unsupervised learning?

A

NIE om n spesifieke reaponse re predict nie, maar eerder om patrone te soek

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Daai hele video oor hoefdings inequality, gaan oor hoeveel observasies jy nodig het om onder n seker error te kom

A

P|abs(v-u)>e| <=2exp(-2(e^2)N)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Wat is die eerste vraag om te bepaal wat se model gebruik moet word?

A

Is daar n spesifieke response variable. I dien JA, supervised. Nou kan die Neurale netwerke of tree-based model wees

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Groot verskil tussen neurale netwerke en tree-based models

A

Neurale netwerke is gebou vir akkuraatheid, en dit is n swart boks. So waar jy moet kan bewys hoekom n seker besluit geneem is, is dit nie rerig n opsie nie. Tree-based models is interpretablr, maw ons kan sien hoe daar by n seker model uitgekom is

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Hoof verskil tussen k-means en hierarchical clustering?

A

K-means kies jy die aantal groepe. Hierarchical, word dit self ontwikkel. So waar jy baie data het, is dit soms beter om k-means te gebruik

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Hoekom kan k-means clustering partykeer nie akkuraat wees nie?

A

Prefers spehrical clusters?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Wanneer daar responses is, en dit is diskrete data punte - watse tipe leer sal dit behels

A

Tree-based classification methods

How well did you know this?
1
Not at all
2
3
4
5
Perfectly