Chapitre 2: Modèles définis par une fonction d'une variable Flashcards

1
Q

f (x) = k

A

f’(x) = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

f (x) = mx + p

A

f’(x) = m

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

f (x) = x²

A

f’ (x) = 2x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

f (x) = x^n

A

f’ (x) = nx^n-1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

f (x) = 1 / x

A

f’ (x) = 1 / x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

f (x) = 1 / x^n

A

f’ (x) = n / x^n+1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

f (x) = racine carré de x

A

f’ (x) = 1/ 2 fois racine carré de x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

f (x) = e^x

A

f’(x) = e^x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

u + v

A

u’+v’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

k * u

A

k * u’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

1/v

A

-v’ / v²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

u/v

A

u’ * v - u * v’ / v²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

u*v

A

u’v + uv’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

A

2u’u

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

e^u

A

u’e^u

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

lim e^x sur -l’infini

A

0

17
Q

lim e^x sur +l’infini

A

+l’infini

18
Q

asymptote verticale

A
  • droite d’équation x=a
  • lim lorsque x tend vers a = l’infini
19
Q

asymptote horizontale

A
  • droite d’équation y=l
  • lim lorsque x tend vers l’infini = l
20
Q

forme indéterminée

A
  • +∞-∞
  • 0*∞
  • 0/0
  • ∞/∞
21
Q

lim l/0

A

22
Q

valeur absolue de x

A

-1 si x >0
1 si x< 0

23
Q

Théorème des valeurs intermédiaires

A

si Fonction f continu alors:
Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c)=k

24
Q

Cas particulier des Théorème des valeurs intermédiaires

A

si fonction f continu et strictement monotone alors:
Pour tout réel k compris entre f(a) et f(b), l’équation f(x)=k admet une unique solution sur l’intervalle [a;b].