chap. 3 : convexité Flashcards

1
Q

(f ° g)(x) se lit

A

f rond g

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

dérivée de (f ° g)(x) :

A

(f ° g) ‘ (x) = g’(x) x (f’ ° g)(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

(u^n)’

A

n x u’ x u^n-1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

(1 / u)’

A
  • (u’ / u^2)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

(racine carrée (u))’

A

u’ / 2racine carrée u

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

notation dérivée seconde

A

f’‘(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

courbe représentative en-dessous de chacune de ses sécantes entre les 2 points d’intervalle

A

f est convexe

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

courbe représentative au-dessus de chacune de ses sécantes entre les deux points d’intervalle

A

f est concave

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

si f’’ est positive sur l’intervalle

A

f est convexe sur I

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

si f’’ est négative sur l’intervalle

A

f est concave sur I

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

si f’ est croissante

A

f est convexe

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

si f’ est décroissante

A

f est concave

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

si f’ change de sens de var en a, alors Cf admet :

A

un point d’inflexion en a

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Si f’‘(a) = 0 et si f’’ change de signe en a

A

alors Cf admet un point d’inflexion en a

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Si Cf traverse a

A

a est un point d’inflexion à Cf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly