Biologisk och emotionell psykologi Flashcards

1
Q

Mesencephalon:

A

Midbrain

Dopamin:
Ventral tegmental area(VTA)
Substantia nigra

Serotonin:
Dorsal raphe nuclei

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Diencephalon

A

Betweenbrain

Hypothalamus: Regulates circadian rhythm aswell as melatonin production in the epithalamus(tallkottkörteln). Serotonin is a precursor to melatonin. Epithalamus is also involved in emotion and memory.
Regulates the pituitary gland and connects it to the nervous system.
Regulates stress.

Thalamus. Receptor of signals, and transmitter of signals. Relay station between cortex and the rest of the brain.
Reconnecting loops.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Cerebrum - Telencephalon

A

Cortex, basal ganglia, limbic system

Subcortical systems “allocortex”
Limbic system/Allocortex:
- Amygdala
- Hippocampus: Fornix - White mass that interconnects hippocampus with e.g hypothalamus.
- Bed nucleus of stria terminalis
- Orbitofrontal cortex
- Cingulum, anterior cingulate cortex ACC
- Insular cortex

Basal ganglia:
- Striatum:
Dorsal striatum - Putamen Caudatus
Ventral striatum: Nucleus Accumbens
-Globus pallidus : Ventral pallidum

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Myelencephalon

A

Medulla:
Regulates heart frequency
Breath. Sensors detect blood PH. Too high or low can be fatal. Hyperventilation causes medulla to stop breath - this can exacerbate panic attack. Common with panic attacks where you exhale too much CO2.
Transfers afferent sensory information from organs.
Cranial nerves

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Metencephalon

A

Pons: Sleep regulation: REM-sleep, sleep paralysis
attention, breath, bladder controll, posture
Transfers motor signals from cerebrum to cerebellum - important for motorics. Only place these two brain regions are connected.
Coordinates eye movement.

Cerebellum: Fine adjustment of motorics
3.6 times more neurons than cerebrum. Same ratio for all mammals. Indicates that neocortex didn’t develop after cerebellum, but that they’ve grown together.
Can be likened to a data center. Not an interaction of signals, they are fed forward.
Receives info from few cells, processes this info using many neurons, then feeds it to progressively fewer and fewer neurons that ultimately deliver the result of the processing.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Mesencephalon:

A

Midbrain:
Substantia nigra
Ventral Tegmental(Täcke) Area - Dopamin cell nucleus reward system.
Red nucleus: When we reach for something.

Tectum(tak)

Superior collicululus:
2D eye maps for movement and localization
Distraction - lower pre-frontal input leads to easier distraction. Important implication for ADHD.

Rostral raphe-group:
Dorsal raphe:
Cell nucleus of serotonin system.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Limbic system

A

Allocortex
- Amygdala
- Hippocampus: Fornix - White mass that interconnects hippocampus with e.g hypothalamus.
- Bed nucleus of stria terminalis
- Orbitofrontal cortex
- Cingulum, anterior cingulate cortex ACC
- Insular cortex

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Amygdala

A

Creates emotional memories. Fear memories.
HPA-activation
Nucleus Accumbens - important for motivation and reward. Important for approach/avoidance-conflicts

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Hippocampus

A
  • Episodic and spatial memories. Episodic memories goes to ACC.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Orbitofrontal cortex

A

Part of pre-frontal cortex.
Bodily changes because of emotions such as nervosity. Damages to this leads to increased risk behavior.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Anterior cingulate-cortex

A

Info from OFC about different scenarios (reward or non reward)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Basal ganglia

A

Motivation(addiction)
Voluntary movement - Prepares and coordinates movement. Keeps track of parts of complex movements. Fine-tunes strength of movements. Important for movement learning. Procedural memory is possible thanks to basal ganglia.
Habits
Learning
Dopamin-system

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Striatum

A

Dopamin-governed system
Dorsal striatum:
Voluntary movement in coordination with cerebellum and motor cortex. Involved in cognition aswell. Cognitive and motoric complications with Parkinson disease.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Globus pallidus

A

Part of the basal ganglia and adjusts voluntary movement. Does so through the inhibitory control loops exerted on the thalamus. Damage to the basal ganglia, and thus the globus pallidus leads to absence of control on the output of the thalamus. This is evident in Parkinsons Disease where regulation of movement is unsuccessful.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Ventral pallidum

A

Forms part of the brain’s reward system, aswell as with ventral striatum (primarily nucleus accumbens)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Nocioception

A

Perception av smärta och temperaturändring

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Hapsis

A

Förmåga att skilja objekt med hjälp av beröring, olika receptorer för vibration, beröring, reaktion på tryck osv

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Proprioception

A

Uppfattning av kroppens, huvudets och lemmars position och rörelse.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Fast adapting receptors

A

Active briefly, in beginning and end of stimulus. Eg. ruffini corpuscles - vibration

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Slow-adapting receptors

A

Active during whole period of stimulus. Eg. hair receptors, Merkel’s receptors.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Dorsal-root ganglion neurons

A

Responsible for carrying signals from receptors, along the system. Their axions vary in diameter and level of myeliniation. Deliver signals from receptors to spinal cord along to the brain for further processing.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Vestibular system and balance

A

A sensory system in the inner ear that helps us maintain balance and posture. Provides information about head orientation and movement in space. Allows for us to know where we are in relation to gravity. It is an integrated system that interacts with our eyes and our proprioception. When our head is moving, the vestibular system controls eye movement to allow objects to remain in visual focus. This allows for a coordinated, stable and integrated sense of movement.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Hypokinesia

A

Absence of spontaneous movements (akinesia) or difficulity performing movement at all.
Tremor

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Hyperkinesia

A

Chorea - Involuntary spasmic movements characteristic of Huntingson syndrome or Tourettes.
Atetos - Twisting uncontrollable movements in eg. cerebral pares.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Pyramidal system
Pathway for voluntary movement. Goes from primary motor cortex directly to muscles via the corticospinal tract. This is responsible for skilled and dexterious movements that are precise and voluntary. Some fibers cross to contralateral side of the medulla.
26
Extrapyramidal system
Pathways for control/postural movements aswell as reflexive movement. Originates in brainstem aswell as basal ganglia. Cortex can influence this system via inputs to brain stem. This system and its pathways are responsible for automatic, rhythmic and involuntary movements such as oral movement during speech and chewing aswell as breathing. Fibers do not cross.
27
Dorsal visual pathway
Dorsal way: Goes directly to motoric cortex without passing consciousness and without analyzing spatial characteristics. This is for quick processing and general comprehension. Localize objects, where? Damaged area leads to not being able to reach for objects or identify where they are.
28
Ventral visual pathway
Ventral way: Analyses och identifies characteristics such as colour, shape and object recognition. Good at recognizing places, faces and bodies. Damaged ventral pathway leads to not being able to identify objects.
29
Sensation(Sensory)
Process where stimuli is received by sensory organs and converted to phy
30
Intersex
Atypical internal and external anatomical sex characteristics. Mixed androgyn characteristics. XX-chromosomes with a high testosterone level leads to androgyne appearance in genitalia. Testosterone should be decomposed but it does not thus this leads to too much and this causes androgyne feutuses. XY-chromosomes with too little testosterone or faulty test receptors.
31
Östradiol
Steroidhormon viktigt för kvinnlig utveckling men även skelettbildning. Män konverterar testosteron till östradiol. Nödvändigt för sexuella funktioner.
32
Estrogen
Affects cell health. Affects CNS aswell as effect and concentration of serotonin etc.
33
Progesteron
Affects GABA signaling. Affects CNS activity. Affects neurotransmitter activity. Affects balance and mood.
34
Testosterone
Affects myelinisation. Connected to sexual drive in both women and men. Testosterone lowers when men are in a stable relationship aswell as when caring for children. Men with high T are more prone to divorce and cheating. T levels are affected by competetive activities more than by bond-maintenance activites. Some studies show ambiguous results amongst women. High levels of T connected to criminality and aggression. Not with youth criminals. Not just aggression and competetiveness. Encourages just and fair division in economical games. Testosterone varies with age and hour of the day. Hard to interpret results. Testosterone leads to increased muscle mass and oxygen uptake capacity.
35
Challenge hypothesis
T drives aggression when it is favorable eg. reproduction, rivality, social instability.
36
Dual hormone hypothesis
T is connected to aggression but not always. Cortisole needs to moderate this relationship in order for aggression to arise.
37
Evolutionary Neuroandrogenic Theory
Evolutionary pressure, people with historically higher T leads to possession of more resources, leads them to be in a favorable position. Thus this leads to biological changes, higher production of androgenes. Gives rise to manifestation of competitive behavior and victimization. Increases both brute behavior such as war and aggression but also sophisticated behavior, such as inventions and achievements that help society.
38
Gender differences in mental health
MDD and PDD double as high for women as men. GAD higher for women as well as more comorbidity. Phobias, PD, SAD women double as high. Suicide: Double as high with men. No difference in young age, higher with older group.
39
Gender differences in neuropsychiatric disability
AST: 80% boys, girls underdiagnosed? Schizofrenia: More men some studies, no difference others ambiguous. ADHD: More boys, girls more inattentive Dyslexia: More boys, bigger variation? Tourettes syndrome: More boys.
40
Structural gender differences
Biggest difference in hypothalamus; which regulates hormone production. Aswell as reproductive behavior. Men bigger heads. Women more neurons. Men more myeline, due to higher T level. Women have bigger Orbital Frontal Cortex. Men have bigger cerebellum. Women better at face processing where anatomy is connected to ability/function.
41
Behavioral gender differences
Girls better at communication and language early on. Boys better at spatial abilites - mental rotation etc. Same level of aggression. Girls more relational aggression. Boys more instrumentally aggressive. Cultural variation is evident. Differences caused by parents, biology and environment. Genus conscious parents raise kids with less gender differences. Boys with higher prenatal concentration of testosterone are better at spatial tasks in some studies.
42
Biological gender differences
Big difference of hormonal exposure between men and women. Aswell as function because of differing receptors. Reproductive behavior is different and that's what is connected to biological and anatomical differences. Hard to separate biological and social causal factors. Hormone levels affect behavior. Behavior affects hormone levels. Early interests greatly affects future. Infant toys predict play preferences in preschool. Toys in childhood predicts future education and profession.
43
Gender differences in play
Fantasy play leads to higher executive functioning. Construction play leads to STEM(science, technology, engineering and mathematics) Kids play and interests plays a big role in development: - Psychological - Rough, and fine motorics - Social interaction - Practice their roles - Act their future selves. Affected by parents (modelling) Girls and boys play with different toys. Inherent or social factors? Socialization does not occur in a vacuum and neither does biology. They interact. Parents are affected by child's biological temperament in their choices for their child. This affects the social contexts in which the child find themselves. Biology is affected by environment. Epigenetic expression due to social circumstances, some genes are activated in certain contexts. Aswell as neurological and neuropharmaceutical factors that affect biology later on in life.
44
Neurotrophic factor
Proteins that contribute to neuron survival, synapse genesis and the forming of long term memories.
45
Long term potentiation
Long-term potentiation (LTP) is a persistent increase in synaptic strength resulting from specific patterns of neuronal activity, which is thought to underlie certain forms of learning and memory. LTP is considered one of the most long-lasting and widely studied forms of synaptic plasticity, the mechanism by which the strength of the connections between neurons can change in response to their activity. The phenomenon of LTP has been extensively studied in the hippocampus, a region of the brain involved in learning and memory.
46
Dopamine projection
The dopamine projections to the striatum refer to the neurons that originate in the substantia nigra and project to the striatum which is the main input nuclei in the basal ganglia (caudate nucleus and putamen), releasing the neurotransmitter dopamine in the process. These projections play a key role in regulating movement, motivation, and reinforcement, and are also involved in the brain's reward system.
47
Long term depression
Long-term depression (LTD) is a phenomenon in which the strength of synaptic connections between neurons decreases over time, lasting much longer than short-term synaptic plasticity. LTD is thought to play a role in memory formation and synaptic scaling, where the overall strength of synapses is globally adjusted to maintain a balance between excitation and inhibition. Unlike long-term potentiation (LTP), which is a long-lasting increase in synaptic strength, LTD is a decrease in synaptic strength and is considered a form of synaptic plasticity.
48
Non-associative memories
Changes in behavior in the form of conditioning where there is no association between a stimulus and a specific outcome or event after the stimulus. e.g: sensitization and habituation.
49
Tulving model
Psychological model that proposes that our memory is constructed of semantic and episodic memory. The different systems involved in memory are phylogenetically and ontogenetically differing in age.
50
Retrograde amnesia
Affects memories that were encoded before the amnesia arose.
51
Anterograde amnesia
Affects memories that are encoded after the amnesia arose. LTM is affected as we can't form new memories but we can remember old ones. Spatial memory is affected aswell. Episodic and partially semantic memory are affected. WM is intact. Procedural memory and thus implicit memory formation is still possible. Some associative memory formation is possible. Priming/perceptual memory is possible aswell.
52
Rutnätsceller
Aktiveras i funktionella moduler - sexkantigt rutnät - när man rör sig i rummet.
53
Huvudriktningsceller
Aktiveras då huvudet vrids åt ett visst håll.
54
Gränsceller
Aktiveras i yttre gränszoner (väggen)
55
Kognitiv karta
Entorhina cortex och hippocampus celler tsm bildar kognitiv karta om var man är samt för att navigera sig.
56
Standard model of consolidation
Episodic memories become independent of hippocampus after consolidation.
57
Multiple trace theory
Episodic memories are always dependent on hippocampus. Semantic memories can be independent though. Multiple Trace Theory is a model of memory that proposes that memories are not stored in a single, unified location in the brain, but instead exist as multiple, distributed traces across various neural networks. According to this theory, each time a memory is retrieved, a new trace is created, strengthening the overall memory representation and increasing the chances of future recall. These multiple traces can interact with each other and are thought to contribute to the persistence, stability, and malleability of memories over time.
58
Episodic memory encoding and retrieval
Interaction between prefrontal cortex and hippocampus. Encoding: FFA left frontal lobe and hippocampus. Retrieval: FFA right frontal lobe.
59
Alzheimer disease
Senile placks that are buildup of protein that are called beta amyloid that prevent nerve signals. Protein gets tangled up and affect neurofibrils. This causes nutrients to not reach cells. These neurons die and over time the brain volume shrinks due to loss of neurons.
59
Alzheimer disease
Senile placks that are buildup of protein that are called beta amyloid that prevent nerve signals. Protein gets tangled up and affect neurofibrils. This causes nutrients to not reach cells. These neurons die and over time the brain volume shrinks due to loss of neurons.
60
Dorsomediala hypothalamus
Äta, dricka och dygnsrytm. Output till preoptic nucleus
61
Preoptic nucleus
GABA-signalering till stora delar av (A)RAS. Initierar icke-REM-sömn. Dvs aktiveras kraftigt vid insomnande. Trött av bensodiazepiner.
62
Paraventricular nucleus
Viktigast för aktivering av det autonoma nervsystemet. Mer kopplat till stress än dygnsrytm.
63
Inititation of REM-sleep
Pons has pontine REM-on and REM-off neurons that interplay to regulate REM sleep.
64
Laterala hypothalamus
Producerar orexin(hypocretin). Brist på detta finns vid narkolepsi typ 1. Autoimmun reaktion som dödar orexinproducerande celler. Finns bara 20 000 såna här celler. Samlar info kring nuvarande sömnbehov och vår nuvarande sömnskuld. Exciterar många olika system som ökar vår vakenhetsgrad.
65
Posterior hypothalamus
Hög densitet av histaminreceptorer. Binder histamin där leder det till högre grad av vakenhet. Antihistamin kan leda till trötthet. GABA-aktivitet från preoptic nucleus ökar non-REM sömn.
66
Hypothalamus centrala roll
Hypothalamus reglerar sömn genom att den kommunicerar med olika hjärnområden som är involverade i sömnreglering. Den får input från dels retinala ganglionceller gällande blåljus-exponering och vidareberfodrar informationen till tallkortskörteln som responderar med minskad melatoninproduktion. Hypothalamus producerar även hormoner och neurotransmittorer som reglerar sömn, dels orexin som stimulerar vakenhet genom att agera på hypothalamus och basala förhjärnan som ansvarar för vakenhet och inhiberar hjärndelar som bidrar till sömnighet som t.ex ventrolaterala preoptiska nucleus.
67
Beta-vågor
Vakna och aktiva, samt vid REM. Liknar vakenhet för det är livliga drömmar.
68
Alpha
Reflektiv, vilande.
69
Theta
Groggig och trött.
70
Delta
Sömn, drömmar.
71
REM-sömn
Ponto-geniculo-occipitial waves: Fasiska(plötsliga) vågor av neuronaktiveringar under REM-sömn. Kan vara viktiga för att konsolidera minnen från dagen. Signalering med acetylkolin i pons är extra viktigt under REM-sömn. Signalering med monoaminer (t.ex serotonin) i pons minskar kraftigt. Vid närvaro av serotonin aktiveras inte REM-sömn. SSRI-behandling kan leda till minskad REM-sömn pga förhöjda serotonin-nivåer. Signalering med GABA i pons minskar REM-sömn. Därför kanske bensodiazepiner leder till minskad REM?
72
Sömndeprivation på sikt
Högt blodtryck, hjärtinfarkt, stroke. Övervikt - ökar problem med sömnapne. Diabetes Ångest- depression Sova 5h jämfört med 7h = 15% ökad "all cause" death risk Räcker inte att sova ikapp på helger.
73
Insomni & stress
Stress (HPA-aktivering)- ofta ökade problem, alltså att man har fler problem än vanligt i livet. Upplevelse av hot leder till mer stress. Leder till mer stress pga sömnbrist. Sämre problemlösningsförmåga vid insomni. Ökad irritabilitet. Depression och ångest står för 35% av insomni. Högre nivåer av ACTH-nivåer och kortisolnivåer.
74
Insomni orsaker
Olämlig sovmiljö. Ljusföroreningar, LED-lampor som ser vita ut men är egentligen mer blå. Oregelbunden livsstil, skiftesarbete samt JET-lag. Brist på rörelse under dagen. Största två riskfaktorerna för insomni är att vara gammal och kvinna.
75
ACTH
Hormone that regulates production of cortisol.
76
Sömnapne
Långa andningsuppehåll under natten. Lider till trötthet under dagen samt ofrivilliga tupplurar. Orsakas av övervikt men även av neurologiska orsaker.
77
Narkolepsi
Misstänker autoimmun sjukdom som angriper orexinceller.
78
Kataplexi
Plötslig förlust av muskelkontroll, särskilt vid upprymdhet och skratt.
79
Sömnparalys
Pons stoppar rörelse för att man inte ska leva ut sin REM-sömn men man är vaken ändå, därför kan man inte röra sig men man hallucinerar ändå.
80
Behandling av sömproblem.
Effektiv behandlingsterapi som hjälper 70-80%. Sömnhygien. Utmaningar: Variation i behandlares kunskap om effektiva behandlingar. Patientens motvilja att följa råden.
81
Bensodiazepinliknande preparat
Snabbare insomning och längre sömn. Ökar GABA-signalering. Cl- kanaler öppnas oftare. Zopiklon Beroendeframkallande, ihållande trötthet och ostadighet.
82
Bensodiapeziner
Går ur kroppen långsammare än efterliknande preparat. Men tiden påverkas inte av ålder, därav förskrivs det till äldre. Oxazepam.
83
Melatonin
Bäst för jet-lag, återställer dygnsrytm. Förskrivs åt äldre, 55 år+ pga sänkt seratonin/melatonin nivå. Cirkadin, Melatan.
84
Antihistaminer
Inte beroendeframkallande, kan användas vid alkoholberoende. Påverkas (A)RAS.
85
Serotonin antagonist och reuptake-inhibtors (SARI)
Work as sedatives and cause drowsiness.
86
Snabb emotionell respons
Stimuli via synen → thalamus → Amygdala → Emotionell respons
87
Långsam emotionell respons
Stimuli via synen → thalamus → Hjärnbarken(sensorisk cortex)→ Amygdala → Emotionell respons
88
Spontan återhämtning vid utsläckt ångest
Rädslan återkommer en tid efter behandlingen är avsultad och patienten är problemfri.
89
Renewal vid utsläckt ångest
När något i kontext ändras, varesig det är inre eller yttre kontext så kan detta resultera i ångest.
90
Hedonic regulation
Increase pleasure/Decrease pain.
91
Instrumental regulation
Increase expected benefits. Use regulation as a tool to reach goals.
92
Processmodell emotion
Situation - Går i mörk skog Attention - Upptäcker mörk skugga, hör ljud. Appraisal - Utvärderar huruvida det är farligt, man kan uppfatta det som att det är en björn. Response - Vi blir rädda och försöker ta oss därifrån.
93
Emotionsregleringsstrategier Situation - Precaution
Undvika situationer där jobbiga situationer kan uppstå. Kanske gå i skogen under dagen och i mer öppna platser för att undvika jobbiga känslan att vara rädd för björnar.
94
Emotionsregleringsstrategier Situation - Modification - ändra situationen
Ta med sig en kompis för stöd och hjälp i situationen.
95
Emotionsregleringsstrategier Attention
Styr uppmärksamhet mot något annat.
96
Emotionsregleringsstrategier Appraisal
Ändra värderingen av situationen, är det verkligen en så farlig situation?
97
Emotionsregleringsstrategier Response
Reglera vår emotion, stävja rädslouttryck som skrika och springa, istället gå lugnt därifrån när man möter en björn.
98
Produktion av dopamin
I ventrala tegmentala regionen samt i substantia nigra. Huvudsaklingen i axonterminalerna eller påväg mot axonterminalerna som det produceras dopamin.
99
Synthesis of serotonin
In Raphe Nuclei in the midline of the brainstem.
100
Raphe nuclei
A cluster of neurons in the brainstem along the midline of the brainstem that produce serotonin aswell as regulate the release of it. These nuclei are found in the pons aswell as the medulla.
101
Complexity of serotonin
We do not know exactly how and in what direction serotonin affects our well-being. Is it an excess or deficit that causes issues? The synthesis, release, reception, binding, reuptake and reuse of the serotonin is also a complex matter wherein we have 15 different receptors solely for serotonin.
102
Critique against the serotonin hypothesis
There is no clear evidence to low concentrations of 5HT causing depression. 5HT-autoreceptors decrease synthesis, we do not see an increased activity of these autoreceptors during depression. We've actually seen a decrease in transporter binding and therefore more serotonin the cleft with people with social anxiety.
103
Autoreceptor
An autoreceptor sits on the same neuron that produces and releases neurotransmitters. It modulates the concentration of the neurotransmitter in the synaptic cleft, reducing synthesis and release when a high concentration has been reached and the opposite is true for low concentrations. Autoreceptors are important for the maintenance of homeostasis in the synaptic cleft.
104
Nucleus accumbens
A region that is part of the basal ganglia. It is located in the ventral straitum, near the basal forebrain and is connected to other important brain regions such as the prefrontal cortex, amygdala and hippocampus. It plays an important role in the brain's reward and motivation aswell as reinforcement system and is activated by pleasureable stimuli such as food, sex, drugs etc. It is also a part of decision making and emotional regulation.
105
Emotional regulation
Flexibility in our regulation and response. Not every situation elicits the same reaction. Executive functions are involved in emotional regulation, therefore children and people with ADHD might have difficulty regulation emotion.
106
Damages to Orbitofrontal cortex
Personality change. Difficulty regulating emotion. Bad judgement. Bad impulse control. Difficulty identifying and interpreting emotional information and their potential consequences. Prefrontal and orbitofrontal cortex play a part in regulating emotion and supressing inappropriate emotional responses.
107
Damages to the peripheral somatosensory system can be
Loss or reduction of sensation and touch in the affected area. Muscle weakness and paralysis. Loss of reflexes Muscle atrophy. Tingling, burning or numbing sensation.
108
Damages to the central somatosensory system
Loss of perception of where body parts may be. Problems with deafferentiation pain, absence of stimulus from body parts may lead to phantom pain where the limb would have been. Sensory loss, hypoesthesia. Or increased pain sensitivity: hyperalgesia. Sensory ataxia, affects coordination and balance. Difficulty in locating sensations. Changes in perception of body image such as size and shape and ownership of body parts.
109
How does the vestibular system help with motorics?
4 ways. 1. Balance and posture. The vestibular system provides us with information about our body and head position in relation to the surroundings. This is important for maintaining balance and posture during movement. 2. Eye movements: The vestibular system controls eye movements when we move our bodies or our surroundings move, this is so that we can hold an object in focus visually. 3. Movement coordination: An integration of proprioception, visual information and orientation of the body information results in us being able to coordinate movements smoothly and in a stable manner. 4. Reorientation: The fluids in the inner ear react in relation to the heads orientation and this allows us to get a sense of where we are in relation to gravity. This allows us to compensate for change and remain upright aswell as reorient our sense of where we are.
110
Hierarchy of the sensomotoric system.
1. Sensomotoric cortex in the brain: Plans, controls and inhibits movement. Outer layer of the brain responsible for higher-level processing of sensomotoric information and plans voluntary movement. 2. Basal ganglia: Group of nuclei in the brain that play a role in voluntary, involuntary movement and posture. Finely adjusts movement. 3. Cerebellum: Allows for skillful movement. Coordinates movement and balance. 4. Thalamus: Receives information from the brainstem and relays it to the cortex for further processing. 5. Brainstem: Receives information from the spinal cord and transmits it to the thalamus aswell as cerebellum. 6. Spinal cord: Part of the CNS, receives sensory signals from the PNS aswell as sends motor signals to the muscles through the PNS. 7. Peripheral nervous system: Receives sensory signals from the receptors that is sent to the spinal cord. Receives motor signals from the spinal cord and sends it to muscles for movement activation. 8. Receptors: Mechanoreceptors, thermoceptors, etc that send signals to the PNS.
111
Convertion of sound to nerve signals
1. Sound waves: Sound waves hit our ears causing mechanical vibration. 2. Ear mechanics: These vibrations are transmitted by the eardrum to the inner ear where they cause the inner ear fluids to vibrate causing waves in the fluids. 3. Cochlea: The fluid waves pass through the cochlea which is a spiral-shaped organ in the inner ear which contains hair cells. These hair cells are mechanoreceptors responsible for converting the fluid waves to electrical signals. 4. Auditory nerve: These electrical signals then are passed along to the auditory nerve which is a part of the PNS, that sends the signal to the auditory cortex. 5. Auditory cortex: Electrical signals are sent to the auditory cortex that interprets the signals created by the cochlea and the hair cells that determine what signals to send depending on frequency of the waves.
112
Utricle
Detects movement and acceleration in linear plane. Has hair cells that react to acceleration because fluids in the inner ear start to produce waves. These waves produce electrical signals by the hair cells that are relayed to the thalamus through the vestibular nerve. This helps us compensate for the change in acceleration in order to maintain balance and posture.
113
Saccule
Detects movement and acceleration in vertical plan.
114
Planning and initiation of motor movements.
Happens in the primary motor cortex, located in the frontal lobe. Plans movements here then sends signals through the corticospinal tract that goes from the brain through the spinal cord to the muscles.
115
Inhibitory control loops of basal ganglia
The basal ganglia orchestrate inhibitory control loops to make sure that movement is coordinated, correctly tuned in terms of strength and appropriateness. It does this by receiving information from the motor cortex, then prepares the movement and then relays this information to the thalamus that then sends information to the motor cortex again. The inhibition is exerted by the basal ganglia through release of GABA on the thalamus, which inhibits thalamus' output to the motor cortex.
116
Cerebellum
Programs movements. Coordinates movements. Assists in learning of new skills. A clock that regulates the rhythm of movement. Also center for predictions, predictive control in movement.
117
General adaptation syndrome(GAS)
Consists of three phases, alarm, resistance and exhaustion. Sudden activation of the sympathetic nervous system triggers the alarm phase. Resistance is when the body's resources are mobilized during a prolonged time. Stress hormones are continually secreted. There is a limit to how long this can be sustained. Exhaustion occurs when the body's immune system is too weak, and vulnerability to disease is very high. Can lead to collapse, sickness or death. Critique against GAS theory: Unspecific and general. Are rats and humans really able to be compared when rats were tortured? What is stress? The stimulus or response? Is it the emotional interpretation of signals? Everything threathens homeostasis, is everything a stressor?
118
Riskfaktorer för stress
Otrygg anknytning. Bristande socialt stöd. Dåliga sömnvanor, samt oregelbunden livsstil. Dålig self-efficacy Dålig coping.
119
Aktivering av stressrespons
Binjuren utsöndrar kortisol, adrenalin och noradrenalin. Höjer blodsockerhalt, blodtryck samt puls. Mer energi åt musklerna, blodet koagulerar snabbare och nedsatt nocioception, mer syretillförsel till musklerna.
120
Slow-acting stress pathway
Activated by the hypothalamus when a stressor or dangerous stimulus is detected by the thalamus that asks the hypothalamus for evaluation. This leads to an release of corticotropin hormone that stimulates the pituitary gland that releases adrenicorticotropin-hormone into the bloodstream. This further stimulates the adrenal glands to release adrenaline and cortisol. This elevates blood pressure, increases glucose concentration in the blood stream and elevates pulse to prepare us for a fight or flight. The hypothalamus receives input from the HPA-axis to regulate the activation of said axis. We only want so much cortisol and adrenaline coarsing through our veins. When the stressor is eliminated, the HPA-axis is deactivated and vitals are returned to base level. This repairs stress-related damage aswell.
121
Long term consequences of stress response activation
With the repeated activation of the stress response, the chronical presence of adrenaline and cortisol can produce long term effects on the immune, cardiovascular and nervous system causing different issues such as heart disease, cardiovascular issues, depression, anxiety and other chronic conditions. It can also affect the hippocampus causing cell degeneration, this is seen with PTSD patients who suffer memory loss. The hippocampus is involved in shutting off the stress response as it communicates with the hypothalamic HPA-axis. Thus a dysfunctional hippocampus leads to a prolonged stress reaction that leads to further stress. Hippocampus detects cortisol levels in blood and elicits a negative feedback loop that results in the HPA-axis shuts off. Hippocampal neurons are damaged by excess cortisol.
122
Fast-acting pathway of stress
1. Stressor detected by the body. 2. Signaling from brain that sends signal to adrenal medulla through the sympathetic nervous system. 3. Release of neurotransmitters such as adrenaline and noradrenaline into the blood stream. 4. Physiological changes occur to prepare to fend off and deal with stressor. 5. Post-stressor deactivation of stress response. Physiological regression to base line.
123
Beroende innebär
Eskalering av bruk. Tvångsmässigt intag Återfall efter försök att sluta.
124
Riskfaktorer för beroendeutveckling
Adverse Childhood Experiences ACE Kvinnor, delvis pga kroppsvikt men även hormonella faktorer
125
Wanting-Liking
Produced by different brain regions. Wanting - Striving, effect increases after escalation of use. Sensitivization increases because of learning. Liking - Liking the effects. This effect decreases with abuse. Tolerance increases.
126
Sensitivization of the mesolimbic dopamin circuit
Mesolimbic dopamin circuit connects the ventral tegmental area and the nucleus accumbens. In summary, sensitization in the mesolimbic dopamine circuit plays a crucial role in the development of drug abuse and addiction by increasing both wanting (craving) and liking (pleasure) associated with drug use.
127
Alkohols beroendeeffekter
Ökar GABA Blcokerar glutamatreceptorn NMDA, som är excitatorisk(Påverkar inlärning negativt) Ökar dopaminfrisättning Ventral tegmental area - dopamin till prefrontala kortex, därför får vi inhiberad impulskontroll. Alkohol inhiberar VTA = lever ut impulser i ökad grad. Högt långvarigt bruk mycket skadligt.
128
Bensodiazepiner beroendeeffekter
Ökar GABA. Lugnande effekt beteendemässigt Tillvänjningseffekt kräver ökad dos, men platå uppnås oftast. Ska utsättas långsamt. Oförtjänt dåligt rykte. Ibland är det det bästa alternativet. Sällan dödliga överdoser, dock ökar dödlighet i kombination med alkohol och opiater.
129
Lustgas N2O
Lugnande, sövande, smärtlindrande med inslag av eufori. Utvidgar blodkärl i lungorna. Enkel molekyl. Ökar GABA signalering. Inhiberar NMDA (glutamatreceptorer) Ökar mesolimbisk dopaminsignalering från VTA till limbiska systemet samt nucleus accumbens/ventrala striatum. Verkar också genom opioidsystemet. Inte ofarlig vid hög användning. Blodförändringar som kan ge arrytmier. Genförändring vid djurstudier. Akut vitaminbrist med nervstörningar.
130
Cannabis
Huvudsaklig aktiv substans: THC Fettlöslig, lagras i hjärnan. Aktiverar cannabinoidreceptorer. Beteendeeffekter: Eufori Försämrat korttidsminne Ökad aptit Hallucinationer Ångest Paranoia Psykos
131
Amefetamin och Metamfetamin
"Drunken uncle" : Kommer in i neuronet och vänder upp och ner på möblerna. Stoppar domain(amfet) och serotonin (metamfet.) Stoppar upptag till vesiklarna som skulle fylls med neurotransmittorer. Vänder på transportörens flöde och spottar ut monoaminer i synapsen. Beteende: Eufori Ökad puls Ökad kroppstemperatur Ökad vakenhet Beroende Aggressivitet Anorexi Psykos Depression Sömnstörningar/epilepsi Torr mun, LOL
132
MDMA
Blockerar återupptag av serotonin, vänder transportörens riktning och ökar frisättning. Ökar också noradrenalinfrisättning. Vissa SSRI kan blockera effekten, men man kan även få serotonergt syndrom. Beteende: Milda hallucinationer Eufori En känsla av infre frid Förhöjd känslighet Förhöjd känsla av intimitet Sker forskning på MDMA som medicin för behandlingsresistent PTSD och depression.
133
Psilocin (Psilocybin)
Stimulerar serotoninreceptor 2A. Hallucinogen Nya stjärnan på psykofarmahimlen. Främst för behandlingsresistent PTSD och depression. Trippar i lugn miljö med guider närvarande. Lugn musik. Ögonbindel pga ljuskänslighet??? Oklart vad den terapeutiska mekanismen är.
134
Ketamin
Smärtlindrande, sövande. Minskar suicidalitet snabbt, SSRI fördröjt.
135
Opiater
Smärtstillande Ångestlindrande Frisättning av dopamin(inhibierar GABA-neuron) och Histaminer Typer: Morfin Heroin - Snabb ökning av mikroreceptorer ger tolerans Fentanyl - Superdödligt Endorfin(Kroppsegen opiat)
136
Selektiv uppmärksamhet
Förmågan att välja ut de uttryck värda vidare bearbetning. Styrs av top-down och bottom-up processer.
137
Fokuserad uppmärksamhet
Förmågan att ignorera irrelevant intryck.
138
Delad uppmärksamhet
Förmågan att uppmärksamma två intryck samtidigt.
139
Faktorer som påverkar uppmärksamhetsförmågan
Vakenhetsgrad: Viktig för uppmärksamhet och arbetsminne. Optimal vakenhetsgrad, inte för aktiv. Stimulusdriven uppmärksamhet: Den typ av uppmärksamhet som dras till salient stimuli. Men även tankar som dyker upp i vårt huvud som ej går att släppa. Kontrollerad uppmärksamhet: Den typ av uppmärksamhet som vi använder när vi väljer att fokusera på en specifik sak. Då ignorerar vi även irrelevant input.
140
Stimulus-styrd uppmärksamhet
Nyheter, plötslig förändring, rörelser, yttre stimuli
141
Självkontrollerad uppmärksamhet
Anstränga sig för att fokusera Ta sin tid Hålla saker i minnet
142
Uppmärksamhetens neurala bas
A(RAS) - Vakenhet Superior colliculus - styr ögonen Thalamus - pulvinarkärnan Cingulate cortex, innanför prefontala cortex Parietalloberna, orientera i rummet Frontalloberna, framför allt prefrontala cortex
143
Pulvinarkärnan
Kopplad till ventrala visuella strömmen Input från superior colliculus: 2D-karta över synfältet Styr eller speglar uppmärksamhet?? Återkopplingsloop med cortex
144
Lateral genicular nucleus
Sitter i Thalamus, tar emot och filtrerar input från synnerven. Ponto-geniculo-occipital waves??
145
Ponto-geniculo-occipital waves
Ponto-geniculo-occipital (PGO) waves are electrical waves that occur in the brain during the transition from wakefulness to sleep. They originate in the pons, a part of the brainstem, and then travel to the lateral geniculate nucleus in the thalamus before finally reaching the occipital cortex, which is responsible for processing visual information. PGO waves are thought to play a role in the regulation of sleep and the consolidation of memory. They have been observed in various animals, including cats, rats, and humans, and their pattern and frequency can change depending on the stage of sleep. Ponto-Geniculo-Occipital (PGO) waves are electrical brain wave patterns that occur during rapid eye movement (REM) sleep. They are characterized by bursts of electrical activity in the brainstem regions known as the pons, lateral geniculate nucleus, and occipital cortex. PGO waves are believed to be involved in the generation of REM sleep, as well as in the processing of visual information during dreaming. Research has also suggested that PGO waves may be disrupted in certain neurological disorders, such as Parkinson's disease and schizophrenia.
146
Emotion's effect on attention
Motivation: Nucleus accumbens Ventral pallidum Anterior cingulate cortex, ACC Emotional memories: Amygdala Stria terminalis Hippocampus ACC
147
Exekutiva funktioner
Bibehållen uppmärksamhet Reflektion Organisation Självreglering Självuppskattning Social kognition Medgörlighet Arbetsminne Koordination av rörelse
148
Vid ADHD gällande exekutiva funktioner
Koncentrationssvårigheter Impulsivitet Hyperaktivitet Planeringssvårigheter Oflexibel Dålig självkänsla Nedsatt social kompetens Trotsigt beteende Disträ Motoriska svårigheter
149
Första reaktionen vid stress och vad som händer om vi inte lyckas lösa stressoren
Storhjärnan jobbar för att lösa problemet. En avancerad hantering av påfrestningar som gör att vi lyckats utvecklas så långt som vi gjort som art. Vi använder vår analytiska förmåga för att komma undan faran. Vi använder rationella bemästringsstrategier. Endast när detta misslyckas använder vi oss av mer primitiva biologiska metoder. Om inte våra kognitiva/emotionella coping-strategier fungerar triggas fight or flight.
150
Neuroplasticity
Hippocampus can be rebuilt and stem cells can regenerate to a certain extent. It might take time. Activities that help regeneration: Peace and quiet. Physical activity Stimulation of the soul, nature and culture.
151
Congenital adrenal hyperplasia
XX-chromosome feutus exposed to too much testosterone. Leads to external parts of genitalia developing in masculine direction.
152
Hypogonadism
XY-chromosome not being exposed to enough testosterone. Leads to development of breast, but not body hair nor testicles nor ovaries.
153
Neurobiological differences between men and women in adults
Synthesis and reception of neurotransmitters differ between the two groups. Varies in women in relation to menstrual cycle.
154
Suprachiasmatic nucleus
24h-klocka som koordinerar olika hjärndelar för att uppnå synkronisering av cirkadiska rytmen. Får input från intergeniculate leaflet i thalamus om både visuell men även icke-visuell sensorisk input från andra delar i genikularkroppen.
155
Melanopsin
Pigment i ögat som aktiveras av kortvågigt blått ljus. Skickar signaler om huruvida melatonin bör produceras.
156
Lateral thalamus
Collects information about current sleep debt. Excites many systems that regulate wakefulness.
157
Dorsomediala hypothalamus
Äta, dricka och dygnsrytm. Output till Pos nucleus
158
Distributed network theory
This theory proposes that long-term memories are stored in a distributed network of neurons throughout the brain, rather than in a single, specific location. According to this theory, each memory is represented by the activity patterns of a large number of neurons that are distributed across multiple brain regions.
159
Engram theory
This theory proposes that the changes in the structure and biochemistry of neurons otherwise known as engrams underlie long-term memories.
160
Synaptic plasticity
Refers to the changes in strength of the synapses between neurons. It is this change that underlies the long-term memories. New experiences affect the synapses' strength and this modification affects the memories.
161
Standard model of consolidation - Squiremodellen
Episodic memories become independent of hippocampus after consolidation.
162
Acetylcholine
Important for attentional functions. Sustained and selective attention seems to be affected by low acetylcholine levels. Increase in acetylcholine leads to heightened wakefulness. Levels decrease when we enter sleep and increase when we wake up.