Basic Argument Forms Flashcards
Modus Ponens (MP)
(p → q)
p
∴ q
Modus Tollens (MT)
(p → q)
¬q
∴ ¬p
Hypothetical Syllogism (HS)
(p → q)
(q → r)
∴ (p → r)
Disjunctive Syllogism (DS)
(p ∨ q)
¬p
∴ q
Constructive Dilemma (CD)
(p → q)
(r → s)
(p ∨ r)
∴ (q ∨ s)
Destructive Dilemma (DD)
(p → q)
(r → s)
(¬q ∨ ¬s)
∴ (¬p ∨ ¬r)
Composition
(p → q)
(p → r)
∴ (p → (q ∧ r))
De Morgan’s Theorem (1)
¬(p ∧ q)
∴ (¬p ∨ ¬q)
De Morgan’s Theorem (2)
¬(p ∨ q)
∴ (¬p ∧ ¬q)
Transposition
(p → q)
∴ (¬q → ¬p)
Material Implication
(p → q)
∴ (¬p ∨ q)
Exportation
((p ∧ q) → r)
∴ (p → (q → r))
Importation
From (if q is true then r is true, if p is true) we can prove (if p and q are true then r is true).
(p → (q → r))
∴ ((p ∧ q) → r)
Tautology (1)
p
∴ (p ∨ p)
Tautology (2)
p
∴ (p ∧ p)