17. Explosion and Absurdity Flashcards
Explosion
A) ex falso sequitur quodlibet = from contradiction, anything [follows]’
B) Inconsistent truth table, not case with all true premises, hence tautologically valid.
C) α, ¬α ⊨ γ
Falsum
A) Nullary connective (Symbol ⊥)
B) Truth condition: If anything Conclusion=0
C) α ⊨ ⊥ if and only if ⊨ ¬α
c) Falsum in all rows where α is true
Verum
A) Nullary connective (Symbol ⊤)
B) Truth condition: If anything Conclusion=1
Equivalences involving ⊤ and ⊥
A) ⊤ ≈ ¬⊥ and ⊥ ≈ ¬⊤
B) ⊤ ≈ α ∨ ¬α and ⊥ ≈ α ∧ ¬α (for any wff α)
C) α ∧ ⊤ ≈ α and α ∨ ⊥ ≈ α
Tautologically valid arguments involving ⊤ and ⊥
A) ⊥ ⊨ α
B) α ⊨ ⊤
Five ways of saying Falsum!
{α1, . . . , αn} is inconsistentα
1, . . . , αn ⊨ ⊥
α1 ∧ · · · ∧ αn is a contradiction
α1 ∧ · · · ∧ αn ⊨⊥
⊨ ¬(α1 ∧ · · · ∧ αn)