Arcs paramètres et intégrales doubles Flashcards

1
Q

f differentiable

A

f differentiable en a <=> il existe une application linéaire l / lim 1/(IIhII) (IIf(a+h) - f(a) - l(h)II) = 0

l est la différentiel en a

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

distance curviligne

A

l(AB) = int (A-> B,IIf’(t)IIdt)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Repère de Frenet

A

T(t) = f’(t)/IIf(‘(t)II

N(t) = rπ/2(T(t))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

fonction a

A

T(t) = cos(a)i + sin(a)j

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

courbure

A

dT/ds = y(s)N

y courbure “gamma”

rayon de courbure R = 1/y

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

formule de frénet

A

y = da/ds

dN/ds = -y(s)T(s) = -T(s)/R(s)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Rayon de courbure

A

R(s) = IIf’II3/det(f’,f’’)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

developée

A

C = M + RN

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

acroissement fini pour fonction de plusieurs variables

A

si f est C1 sur U alors il existe t dans ]0,1[ /

f(b) = f(a) + <b-a>
</b-a>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Taylor à l’ordre 1

A

si f est C1 sur U alors

pour tout a,b f(b) = f(a) + <b-a> + o(IIb-aII)</b-a>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Taylor à l’ordre 2

A

si f est C2 sur U

f(b) = f(a) + <b-a> + 1/2 ( h2d2f(a)/dx2+ k2d2f(a)/dy2+ 2hkd2f(a)/dxdy )</b-a>

+o(IIb-aII2)

avec b-a = hx + by

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Théorème de schwartz

A

si f est C2 sur U

d2f(a)/dxdy = d2f(a)/dydx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Théorème de fubini

A

B = (x,y) : a<x></x>

<p>alors int(B,f) = int(a-&gt;b,int(f(x)-&gt;g(x),f(x,y)dy)dx)</p>

</x>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Théorème de green-reimann

A

champ de vecteurs X = (P,Q) et domaine D entouré par arc L on a

int(L,Pdx + Qdy) = intdouble(D,(dQ/dx-dP/dy)dxdy)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

allure local d’un arc paramétré

A

p = min( k / f(k)<>0 )

q = min (k > p / f(k) non colinéaire à f(p))

on prend l’axe des abscisse dirigé par f(p) et l’ordonnée dirigé par f(q)

si impair alors positif et négatif

si pair alors seulement positif

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q
A