多元函数 Flashcards

1
Q

如何证明多元函数极限不存在

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

多元函数计算极限方法:简单变换(有根号就通分)

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

多元函数计算极限方法:等价无穷小替换

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

多元函数计算极限方法:无穷小*有界

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

多元函数计算极限方法:重要极限

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

偏导数的定义

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

偏导数的几何意义

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

一阶偏导数计算

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

高阶阶偏导数计算

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

二阶偏导数相等定理

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

全增量跟偏增量的不同

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

全微分计算例题

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

全导数求导:一元对多元例题

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

多元积分求导:多元对多元例题

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

多元积分求导:多元对多元例题 (抽象函数)

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

多元函数求导:推广情形

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

多元函数二阶求导:Dy2/d x2例题

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

多元函数二阶求导:Dy2/d x y例题

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

多元函数隐函数求导:四种基本类型归纳

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

多元函数隐函数求导:四种基本类型归纳

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

多元函数隐函数求导:F(x,y)例题

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

多元函数隐函数求导:Z=f(x,y,z)例题

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

多元函数隐函数求导:F(x,y)解决方法

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

多元函数隐函数求导:Z=f(x,y,z)方法

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

多元函数隐函数求导:G=f(x,y,z)& Z=f(x,y,z)方法

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

多元函数隐函数求导:G=f(x,y,z)& Z=f(x,y,z)例题

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

多元函数隐函数求导:易错点

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

二元函数 :定义域

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

二元函数 :内点、外点、边界点

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

平面点集 :什么是聚点?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

平面点集 :平面点集的类型

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

平面点集 :判断闭集、开集、非闭集也非开集

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

平面点集例题 :判断平面点集的类型

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

理解多元复合函数 :

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

求多元函数极限 : 单路径法

36
Q

求二元极限例题 :极坐标法

A

存在 x平方 + y平方

37
Q

求二元极限例题 :设直线法

A

hint : x与y次数存在不同

38
Q

求二元极限例题 :x + y / x - y

39
Q

求二元极限例题 :形如 x次方 * y次方/ x次方 + y次方

Hint : 不会这个结论就用 路径法

40
Q

二元函数极限 :定义

41
Q

开集、区域 :有什么不同?

42
Q

二元函数 :连续性

43
Q

二元极限 :计算方法总结

44
Q

例题 二元函数计算极限 :连续点,极限=函数值

A

hint :二元初等函数都是连续的

45
Q

例题 二元函数计算极限 :等价无穷小

46
Q

例题 二元函数计算极限 : 夹逼法 & 夹逼法替代

47
Q

例题 二元函数计算极限 : 极坐标法

48
Q

例题 二元函数计算极限 :

49
Q

例题 二元函数计算极限 :

50
Q

例题 二元函数计算极限 :

51
Q

不会做题 :求极限 & 证明极限不存在

52
Q

偏导数的定义 :

53
Q

偏导数 : 直观理解

54
Q

偏导数例题 :判断偏导数是否存在

55
Q

偏导数 :偏导 ≠ 连续&极限

A

连续 ≠ 存在极限

56
Q

求偏导数 例题 :帮助理解概念

57
Q

偏导数 :偏导数也是函数

58
Q

偏导数例题 :求偏导数的几种方法

59
Q

偏导数例题 :求某点 偏导数

60
Q

偏导数例题 :偏导数 几何意义

61
Q

高阶偏导数 :二阶的符号 跟 计算

62
Q

高阶偏导数 :二阶的计算结论

63
Q

二元函数 :可导、连续、可微 之间的关系

64
Q

高阶偏导数 例题 :三元函数求偏导

65
Q

全微分 : 全微分的定义

66
Q

全微分 :可微的定义

67
Q

全微分 :帮助理解 可微定义的例题目

68
Q

全微分 :可微的图像

69
Q

全微分 : 计算全微分的 叠加原理

70
Q

全微分 例题 : 求某点的全微分

71
Q

全微分 例题 : 判断函数在某点 可微

72
Q

可微的定义 :

73
Q

例题 :利用全微分估值

74
Q

例题 : 多元函数 链式法则

75
Q

例题 : 多元函数 链式法则

76
Q

y(x)、z(x)隐函数求导的公式法是什么?

77
Q

例题 .(x,y,z)方程组的隐函数求导的公式法是什么?

78
Q

(x,y,z,v)方程组的隐函数求导的公式法是什么?

79
Q

例题 :如何求一个方程的切线方程和切平面方程?

80
Q

例题 :如何用公式法求一个方程组的切线方程和切平面方程?

81
Q

例题 :如何用叉乘法求一个方程组的切线方程和切平面方程?

82
Q

例题.如何求方向导数?

83
Q

例题.求二元函数的极值

84
Q

例题.求二元函数的最值

85
Q

例题.在约束条件下,要如何求二元函数的极值