TRigonometric formulae Flashcards
sin(A+B)=
sinAcosB + cosAsinB
Sin(A-B)
SinAcosB - cosAsinB
cos(A+B)
cosAcosB - sinAsinB
cos(A-B)
cosAcosB + sinAsinB
sin2A=
2sinAcosB
cos2A
cos2A-sin2A= 2cos2A-1 =1-2sin2A
(using cos2+sin2=1)
show cos(x+90)o = -sinx
cos(A+B)= cosAcosB-sinAsinB
cosxcos90-sinxsin90
(cosx) (0) - (sinx)(1)
- sinx
show cos15= 1+sqrt(3)/2sqrt(2)
cos(60-45)= cos60cos45+sin60sin45
=1+sqrt(3)/2sqrt(2)
if sinA=1/y
find a)cos2A b) sin2A
a) cos2A=1-2sin2A=1-(2 x 1/16)= 1- 1/8 =7/8
b) sin22A + cos22A=1, sin2A =+-sqrt(1-cos22A)
sin2A= +-sqrt(1- 49/64) =+-sqrt(15/64) = +-sqrt(15)/8
tan(A+B) in terms of sin(A+B) and cos(A+B)
sin(A+B)/cos(A+B)
=sinAcosB+cosAsinB/cosAcosB-sinAsinB
divide top and bottom by cosAcosB
=(sinA/cosA + sinBcosB)/1-(2sinAsinB/cosAcosB)
=tanA + tanB/1-tanAtanB
tan(A-B)
tanA-tan(-B)/1-tanAtan(-B)
=tanA-tanB/1+tanAtanB
tan2A
tan(A+A)
tanA+tanA/1-tanAtanA
2tanA/1-tan2A
tan2A=2 what does tanA=
tan2A=2tanA/1-tan2A
2tanA/1-tan2A=2
2tanA=2(1-tan2A)
tan2A+tanA-1=0
tanA=-1+-sqrt(12-(4x1x-1)/2x1
tanA=-1+-sqrt(5)/2
tanA= -1/2+sqrt(5)/2 or -1/2 -sqrt(5)/2
find tan3A in terms of tanA
tan3A= tan(A+2A)= tanA+tan2A/1-tanAtan2A
use double angle formula
tan2A=tanA+tanA/1-tan2A
put tan2A values into tan3A
=tanA+(2tanA/1-tan2A)/1-tanA(2tanA/1-tan2A)
replace tanA by t, to make t+(2t/1-t2)/1-t(2t/1-t2)
then times by (1-t2)
=t(1-t2)+2t/1(1-t2-2txt)=3t-t2/1-3t2
=3tanA-tan3A/1-3tan2A
3sin2x=cosx give answers between 0 and 2π
3sin2x=cosx
3x2sinxcosx=cosx
6sinxcosx-cosx=o
cosx(6sinx-1)=0
cosx=0, x =π/2 or 3π/2
6sinx-1=0. sinx=1/6, x= arcsin1/6 or π-arcsin1/6