equivalent expressions Flashcards
find the maximum value of 2sinx+3cosx
and the value of xo(0≤ x ≤ 360) at which the maximum occurs
rsin(x+a)= rsinxcosa +rcosxsina
rcosa=2, rsina=3
r2cos2a + r2sin2a= 22+32=13
r2(cos2a + sin2a)==13
r2(1)=13
r=+-sqrt(13)
must be positive value to fit limits +sqrt(13)
rsina/rcosa=3/2 tana=1.5 a=56o
therefore 2sinx+3cosx=sqrt(13)sin(x+56)
when sin(x+56)=1
max value= sqrt(13)
sin(x+56)=1 when (x+56)=90
x=34
only one solution between 0 and 360
a) express 4cosx+3sinx as Rcos(x-a)
R>0, 0
b) solve 4cosx+3sinx=2 for 0<x>
</x>
Rcos(x-a)= Rcosxcosa + Rsinxsina
Rcosa=4, Rsina=3
tana=3/4 a=0.64radians
r2(cos2a+sin2a)=42+32=16+9=25
r=5
4cosx+3sinx=2
5cos(x-0.64)=2
x=1.8
only solution between 0 and π
a) express cosØ-sinØ in th form rcos(Ø+a)
b) solve cosØ-sinØ=0.5 for 0≤Ø≤π
a) rcos(Ø+a) =RcosØcosa-rsinØsina
Rcosa=1, Rsina=1
r2(sin2a +cos2)=12+12
r=sqrt(2)
tana=1 a=π/4
cosØ-sinØ= sqrt(s)cos(Ø+π/4)
b) cosØ-sinØ=0.5 —> sqrt(2)cos(Ø+π/4)=0.5
Ø=0.42, only solution between 0 and π/2
9sinØ-6cosØ=7 for 0o≤Ø≤360o
Rsin(Ø-a)=RsinØcosa-RcosØsina
rcosa=9, Rsina=6
r2(cos2a+sin2a)=92+62=117
r=sqrt(117)
tana=6/9=1/3, a=33/7o
sqrt(117)sin(Ø-33.7)=7
(Ø-33.7)=40.33o and 139.67o
Ø=74o, 173.4o
asinx+bcosx can be written in the forms
rsin(x+a), where a =rcosa and b=rsina
rcos(x-a), where a=rsina and b=rcosa
asinx-bcosx can be written in the form
rsin(x-a), where a=rcosa and b=rsina
rcos(x+a), where a=-rsina and b=-rcosa