the binomial theorem Flashcards
(1+ax)n
1+nax+(n(n-1)/2!)(ax)2+(n(n-1)(n-2)3!)(ax)3
expand (1-2x)4
1+4(-2x)+(4(3)/2!)(-2x)2 +(4(3)(2)3!)(ax)3+ (4x3x2x1/4!)(-2x)4
1+8x+24x2-32x3+16x4
(2+6x)5
25(1+3x)5
(1+3x)5= 1+5(3x)+(5(5-1)/2!)(3x)2 +(5(5-1)(5-2)3!)(3x)3+(5x4x3x2/4!)(3x)4+(5x4x3x2x1/5!)(3x)5
1+15x+90x2+270x3+405x4+243x5
25=32, so times everything by 32
32+480x+2880x2+8640x3+1290x4+7776x5
(1+x)-2
1+(-2)(x)+((-2)(-3)/2!)(x2)+((-2)(-3)(-4)/3!)(x3)+((-2)(-3)(-4)(-5)/4!)(x4)
=1-2x+3x2-4x3+5x4
words of wisdom
don’t let your heart speak louder than your mind
how to prove |3x/4|<1 is equivalent to |x|<4/3
- 1<3x/4<1
- 4/3<x></x>
<p>|x|<4/3</p>
</x>
binomial expansion of 1/(1+3x)2 to x3
and use it to find an approximate v value of sqrt(0.94)
1+(-2)(3x)+((-2)(-3)/(2!))(-2x)2+((1/2)(-1/2)(-3/2)/3!)(-2x)3
=1-x-1/2x2-x3/2
-1<-2x<1
valid when |-2x|<1 which gives x<1/2
sqrt(0.94)=0.941/2=(1-2x)1/2 so x=0.03
|0.03|<1/2 so the expansion is valid for this value
sqrrt(0.94) =(1-2x0.03)1/2
=1-(0.03)-1/2(0.03)-1/2(0.03)2 -1/2(0.03)3
=0.97
(3+x)-1up to x3 find what it is valid for
(3+x)-1= 3-1(1+x/3)-1=1/3(1+x/3)-1
=1/3(1+(-1)(x/3) + ((-1)(-2)/2!)(x/3)2+((-1)(-2)(-3)/3!)(x/3)3
=1/3 - (1/9)x + (1/27)x2 - (1/81)x3
valid when |(1/3)x|<1 so |x|<3
show |-4x|<1 is equivalent to |x|<1/4
-1<-4x<1, 1>4x>-1, -14x<1, -1/4<x>
</x>
(1+x)2/3 to x2 use to find value of 1.62/3 how accurate?
(1+x)2/3=1+(2/3)x +((2/3)(-1/3)/2!)(x)2=1+(2/3)x-(1/9)x2
1.62/3=(1+0.6)2/3 = 1+(2/3)(0.6) - 1/9(0.6)2
|0.6|<1 so we can use the expansion
=1+0.4-0.04 = 1.36
1.62/3=1.36798, accurate to two significant figures (1.4)
(1+3x)/(1+x)3
|x|<1
to x3
(1+3x)(1+x)-3
(1+3x)(1 + (-3)x + (-3)(-4)(x2)/2! + (-3)(-4)(-5)(x3)/3! + …)
(1+3x)(1-3x+6x2-10x3+…)
=1-3x+6x2-10x3+…+3x-9x2+18x3-…
1-3x2+8x3
f(x)= (10-x)/(3-x)(1+2x)
expand as far as x2, state the range
A/(3-x) + B/(1+2x)
1/(3-x) + 3/(1+2x)
1/(3-x)=(3-x)-1=3-1(1-x/3)-1=1/3(1-x/3)-1
expanded: 1/3 + (1/9)x + (1/27)x2+…
3/(1+2x)= 3(1+2x)-1=3(expansion)= 3-6x+12x2-…
add together: 10/3 -(53/9)x + (325/27)x2
expansion for (1-x/3)-1 valid for |-1/3|<1 gives |x|< 3
expansion for (1-2x)-1 valid for |2x|<1 gives |x|< 1/2
so its the one that satisfies both inequalities: |x|<1/2
what must you remember for all expansions
to have +…. or -…. at the end
what’s the expansion always valid for
|ax| < 1