Séries Entières Flashcards

1
Q

Definition série entière

A

Soit (an) une suite de nombre. La série de fonctions Σa(n)z^n s’appelle la série entière de terme général a(n)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Définition rayon de convergence

A

R=sup{r≥0 | (a(n) r^n est bornée
a(n)r^n ->(n->+inf) 0
a(n)
r^n converge

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Si (an) est bornée positive

A

alors R≥1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Si (an) ne tend pas vers 0

A

alors R≤1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Si a(n) = 1/n^µ

A

alors R=1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Si a(n) = b^n avec b>0

A

a(n) * r^n tend vers 0 lorsque n tend vers +inf ssi r<1/b

Donc R= 1/b

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Critère de d’Alembert

A
Soit (an) suite de réels POSITIFS, R=Sup{r≥0 |a(n)*r^n converge}
Si a(n+1)/a(n) admet une limite l alors
i) Si l non nul et non +inf alors R=1/l
ii) Si l=0 , R = +inf
iii) Si l=+inf, R=0
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

DSE de cos x

A

cos x = Σ (-1)^n x^2p / (2p)!

R=+inf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

DSE de sin x

A

sin x = Σ (-1)^n x^(2p+1) / (2p+1)!

R=+inf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

DSE de exp(x)

A

exp(x) = Σ x^n / n!

R=+inf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

DSE de ch(x)

A

ch(x) = Σ x^2p / (2p)!

R=+inf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

DSE de sh(x)

A

sh(x) = Σ x^(2p+1) / (2p+1)!

R=+inf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

DSE de 1/(1+x)

A

1/(1+x) = Σ (-1)^n*x^n

R=+inf

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

DSE de (1+x)^µ

A

(1+x)^µ = 1 + Σ(n=1..inf) µ(µ-1)…(µ-n+1) / n! * x^n

R=1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

DSE de ln(1+x)

A

ln(1+x) = Σ(n=1…inf) (-1)^(n+1) x^n / n!

R=1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly