Séries de Fourier Flashcards

1
Q

a(n)

A

a(n) = 1/π ∫(0->2π) f(t)*cos(nt) dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

b(n)

A

b(n) = 1/π ∫(0->2π) f(t)*sin(nt) dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

c(n)

A

c(n) = 2/π ∫(0->2π) f(t)*exp(-int) dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Th. de Dirichlet

A

La série de Fourier d’une fonction f est :

Sp(f)(x) = ao/2 + Σ a(n)cos(nx) + b(n)sin(nx)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

a(n) pour fonction de période T

A

a(n) = 2/T ∫(0->T) f(t)*cos(2π/T nt) dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

b(n) pour fonction de période T

A

b(n) = 2/T ∫(0->T) f(t)*sin(2π/T nt) dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

c(n) pour fonction de période T

A

c(n) = 2/π ∫(0->2π) f(t)*exp(-int) dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Si f paire :

A
b(n) = 0
a(n) = 2/π ∫(0->π) f(t)*cos(nt) dt
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Si f impaire :

A
a(n) = 0
b(n) = 2/π ∫(0->π) f(t)*sin(nt) dt
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Si f est 2π périodique, continue et de classe C1 par morceau sur R alors :
an(f ‘) =
bn(f ‘)=

A

an(f ‘) = n*bn(f)

bn(f ‘)= -n*an(f)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Egalité de Bessel-Parceval Cas réel

A

f Cp(mx,2π) alors a0²/2 + Σ a(n)² + b(n)² = 1/π ∫(0->2π) f(t)² dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly