Research Methods Flashcards
Where are typical or expected scores in a distribution found?
relatively close to the mean
two measures that are important characteristics of distributions of data…
mean and standard deviation
mean = the average
standard deviation = measures how much a set of scores is dispersed around an average measure of variability.
what is standard error?
- the standard deviation of the distribution of sample means
- a measure of expected average distance between a sample mean and the population mean
what is the distribution of sample mean?
the collection of all possible sample means of a given size (n) from a population
What does central Limit theorem tell us?
it tells us that the population mean will be the same as that of the distribution of sample means
- the precise characteristics of a distribution of sample means for samples of any size
- that large sample sizes of over 30 will have a normal distribution
and provides us with the standard error which is the standard deviation of the distribution of sample means
what is normal when n > 30
the shape of the distribution of sample means - normal distribution
to make inferences about a sample mean where both THE POPULATION MEAN AND STANDARD DEVIATION ARE KNOWN - which test do we use?
z-test
When do we REJECT the null hypothesis?
if the sample mean has a low probability (p<0.05)
SINGLE SAMPLE T TEST
involves calculating a t-statistic for the sample mean comparing the sample mean with a given number
- if the t score is found to be extreme for the degrees of freedom the probability is small so we must reject the null hypothesis
- other forms of t-test research designs are repeated measures and independent measures design
independent and repeated measures t tests looks for????
significant differences…
when do you use a t-test?
if the population standard deviation is unknown
repeated measures t tests look for..
a significant difference between mean times 1 and times 2 - before and after
independent measures t test looks for
a significant difference between the two groups - control and experiment – and the null is H0:U1 = u2
how do we describe distributions?
central tendency = mean
variation = standard deviation
as sample sizes increase…
standard error decreases