Protein Synthesis Flashcards
Three letter code that specifies a particular amino acid; found within mRNA
A. Codon
B. Anti-codon
C. Amino acid
A. Codon
Complimentary code for a codon; found within a tRNA
A. Codon
B. Anti-codon
C. Amino acid
B. Anti codon
Differences more often than not lie within the last base
Wobble effect
True or false: multiple codons can code for a single amino acid
True; degenerate
True or false: single amino acid can be coded by multiple codons
True; degenerate
Particular codon can only code for a single amino acid
A. Degenerate B. Unambiguous C. Non-overlapping D. Unpunctuated E. Universal
B.
Adapter molecule
A. mRNA
B. tRNA
C. rRNA
B. tRNA
cloverleaf shaped
Site of attachment for amino acid
A. Acceptor arm
B. D arm
C. Thymidine-pseudouridine cytidine arm
D. Anticodon arm
A. Acceptor arm
Recognition site for specific aminoacyl-tRNA synthetase; rich in dihydrouridine
A. Acceptor arm
B. D arm
C. Thymidine-pseudouridine cytidine arm
D. Anticodon arm
B. D arm
Binds aminoacyl tRNA to ribosomal subunit
A. Acceptor arm
B. D arm
C. Thymidine-pseudouridine cytidine arm
D. Anticodon arm
C.
Seven letter code containing the anticodon
A. Acceptor arm
B. D arm
C. Thymidine-pseudouridine cytidine arm
D. Anticodon arm
D. Anticodon arm
read in a 3’-5’ direction. The codon and anticodon are antiparallel with each other
Special enzyme that binds specific amino acids with their corresponding tRNAs, with the help of ATP
Aminoacyl-tRNA synthetases
Amino acids are attached via their carboxyl end at the 3’ end of the trna with an ESTER BOND, forming an aminoacyl tRNA
Initiation phase includes the following EXCEPT
A. Dissociation
B. 43S
C. 58S
D. 80S
C. It should be 48S
Dissociation includes 40 and 60S(eukaryotic)
Delays re association; allows for other IF’s to mingle with 40S
A. eIF-3, eIF-1A
B. eIF-2GTP
C. eIF-2
D. eIF-2GTP-met-tRNA
A.
Stabilizes the pre-initiation phase
43S preinitiation complex; initiation factor that binds to GTP
A. eIF-3, eIF-1A
B. eIF-2GTP
C. eIF-2
D. eIF-2GTP-met-tRNA
C.
eIF-2alpha phosphorylated in starvation states, preventing protein synthesis
Binds to met-tRNA
A. eIF-3, eIF-1A
B. eIF-2GTP
C. eIF-2
D. eIF-2GTP-met-tRNA
B.
Binds to 40S
A. eIF-3, eIF-1A
B. eIF-2GTP
C. eIF-2
D. eIF-2GTP-met-tRNA
D.
mRNA binds to 43S preinitiation complex via the methylguanosyl triphosphate cap
A. 43S preinitiation phase
B. 48S initiation complex
C. 80S initiation complex
B.
Uses up GTP; cap binding protein complex eIF-4F binds to the methyl cap (cap is only in eukaryotes)
A scaffolding protein
A. eIF-3, eIF-1A
B. eIF-2GTP
C. eIF-2
D. eIF-4G
D.
4G binds eIF-4E, eIF-3, eIF-4A/4B
Responsible for recognizing the mRNA cap; bound by BP-1 to inhibit initiation
A. eIF-3, eIF-1A
B. eIF-2GTP
C. eIF-2
D. eIF-4E
D.
Phosphorylated by insulin and mitogens to enhance initiation
mRNA cap region-rate limiting step in translation
Melts the secondary structure of the cap
A. eIF-3, eIF-1A
B. eIF-4A/4B
C. eIF-2
D. eIF-2GTP-met-tRNA
B.
Has ATPase-helicase activity
48S initiation complex binds to 60 S subunit
A. 43S preinitiation complex
B. 48S initiation complex
C. 80S initiation complex
C.
eIF-5 hydrolyzes the GTP
All initiation factors are then removed
elongation phase includes the following EXCEPT:
A. A-site attachment
B. Peptide bond formation
C. Degenerate
D. Translocation
C. Degenerate; not part, it is a characteristic of genetic code
Elongation factor _________ complexes with GTP
A. eIF-1a
B. eEf-1a
B.
Seen in A-site attachment; complex binds with entering aminoacyl tRNA; charged aminoacyl tRNA then enters the A-site
a-amino group of the A-site amino acid attacks the carboxyl end of te growing P-site polypeptide chain
A. A-site attachment
B. Peptide bond formation
C. Degenerate
D. Translocation
B.
In peptide bond formation, it is facilitated by ________ a ribozyme component of the 60S subunit
Peptidyltransferase; ribozyme is an RNA with enzymatic properties; in this case, 28S RNA of the 60S subunit
P-site tRNA os removed from the P-site
A. A-site attachment
B. Peptide bond formation
C. Degenerate
D. Translocation
D.
Facilitates the transfer of A-site tRNA to the p-site
eEF-2
Energy requirement for elongation phase
4 high energy phosphate bonds
Activation on tRNA- 2 ATPs
Entry of aminoacyl tRNA into A-site -1GTP
Translocation- 1GTP
Where does stop codon enters
A. A-site
B. Peptide bond formation
C. Degenerate
D. Translocation
A.
Remove the growing polypeptide from the P-site tRNA
A. eIF
B. eRF
C. eEF
B.
eRF-1 recognizes UAA, UAG
eRF-2 recognizes UAA, UGA
eRF-3 binds GTP
Changes in the nucleotide sequence of a given DNA segment
A. mutation
B. Silence/nothing
C. Missense
D. Frameshift
A.
Purine to purine OR pyrimidine to pyrimidine
A. Transition mutation
B. Transversion mutations
A.
Purine to pyrimidine or pyrimidine to purine
A. Transition mutation
B. Transversion mutations
B.
In changing something, no frame-shift mutation occurs
Type of mutation that is due to degeneracy of the genetic code
A. Nothing
B. Missense mutation
C. Nonsense mutation
D. Frameshift mutation
A.
Amino acid that is replaced with another amino acid
A. Nothing
B. Missense mutation
C. Nonsense mutation
D. Frameshift mutation
B.
Results in acceptable, partially acceptable, or unacceptable results
Codon coding for an amino acid is replaced with a stop codon
A. Nothing
B. Missense mutation
C. Nonsense mutation
D. Frameshift mutation
C.
Results in premature termination
Error in reading the code due to either insertion or deletion
A. Nothing
B. Missense mutation
C. Nonsense mutation
D. Frameshift mutation
D.
Hb A, beta chain and Hb S, beta chain; glutamine, valine
A. Acceptable
B. Partially acceptable
C. Unacceptable
B.
Hb m (boston), alpha chain; tyrosine
A. Acceptable
B. Partially acceptable
C. Unacceptable
C.
Protein synthesis change due to
A. Environmental threats
B. Viral infection
C. Both
C.
Inactivates eEF-2
A. Ricin
B. Diptheria toxin
C. Aminoglycosides
D. Puromycin
B.
Inactivates 28S rRNA
A. Ricin
B. Diptheria toxin
C. Aminoglycosides
D. Puromycin
A.
A-site of ribosome; causes premature release of growing polypeptide
A. Ricin
B. Diptheria toxin
C. Aminoglycosides
D. Puromycin
D.
Prevents initiation; 30S subunit
A. Ricin
B. Diptheria toxin
C. Aminoglycosides
D. Puromycin
C.
Prevents binding of aminoacyl tRNAs to active site; 30S subunit
A. Ricin
B. Diptheria toxin
C. Aminoglycosides
D. Tetracyclin
D.
Toxic molecule from castor bean
Ricin
Acts as both prokaryotes / eukaryotes
Puromycin
Inhibits peptidyltransferase; 50S subunit
A. Macrolides
B. Diptheria toxin
C. Chloramphenicol
D. Clindamycin/erythromycin
C.
Prokaryotes
Inhibits translocation; 50S subunit
A. Ricin
B. Diptheria toxin
C. Clindamycin/erythromycin
D. Puromycin
C.
Inhibits peptidyltransferase; 60S subunit
A. Cyclohexamide
B. Macrolides
C. Chloramphenicol
A.