PAR4 Flashcards

1
Q

Vnoreni G→H

A

dvojice zobrazeni (φ;ξ); kde φ : V (G) → V (H) a ξ : E(G) → P(H) a (P(H) je mnozina všech cest grafu H)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

zatizeni ciloveho uzlu v z H

A

load(v) = |{u ∈ V (G); φ(u) = v}|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

zatizeni vnoreni

A

load(φ; ξ) = max load(v)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

prumerne zatizeni vnoreni

A

load’(φ; ξ) = 1/|V(H)|SUMA[v z H]load(v)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

stejnosmerne zatizeni vnoreni

A

load(φ; ξ) = [‘load’(φ; ξ)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

expanse vnoreni G do H

A

vexp(φ;ξ)= |V(H)|/|V (G)|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

dilatace zdrojove hrany e z E(G)

A

dil(e) = len(ξ(e))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

dilatace vnoreni

A

dil(φ; ξ) = maxe∈E(G) dil(e)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

prumerna dilatace vnoreni

A

dil(φ; ξ)’ = 1/|E(G)|SUMA[e z E(G)] (dil(e))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

stejnosmerna dilatace vnoreni

A

dil(φ; ξ) = ‘dil(φ; ξ)’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

linkove zahlceni cilove linky e2 z H

A

ecng(e2) = |{e1 ∈ E(G); e2 ⊆ ξ(e1)}|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

linkove zahleceni vnoreni

A

ecng(φ; ξ) = max ecng(e2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

uzlove zahlceni ciloveho uzlu u2 z H

A

ncng(u2) = |{e1 ∈ E(G); u2 ∈ ξ(e1)}|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

simulace se zpomalenim h

A

H simuluje G se zpomalenim h; jestlize jeden krok vypoctu na G muze byt simulovan v O(h) krocich na H.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

vypocetne ekvivalentni site

A

G a H jsou vypocetne ekvivalentni site; pokud G dokaze simulovat H s konstantnim zpomalenim a naopak.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

optimalni hyperkrychle

A

Qn je optimalni hyperkrychle pro G->Qn s load = 1 prave tehdy když n = ‘log|V(G)|’

17
Q

Normalni hyperkubicky alg

A

v kazdem kroku alg jsou pouzity pouze hrany jedne dimenze hyperkrychle – v posobe jdoucich krocich jsou pouzivany po sobe jdouci dimenze

18
Q

quaziizometricke grafy G a H

A

jsou, pokud existuji vnoreni G->H i H->G s konstantnimi hodnotami meritek vnoreni