Matte D - del 2 Flashcards
Standardintegral
∫x^p dx=
∫x^p dx = x^(p+1)/(p+1) +C (p≠-1)
Standardintegral
∫1/x dx =
∫1/x dx = ln |x| + C
Standardintegral
∫e^x dx =
∫e^x dx = e^x + C
Standardintegral
∫sinx dx =
∫sinx dx = -cosx + C
Standardintegral
∫cosx dx =
∫cosx dx = sinx + C
∫tanx dx=
∫tanx dx = -ln |cosx| + C
∫cotx dx =
∫cotx dx= ln |sinx| + C
Standardintegral
∫1/(x^2+1) dx=
∫1/(x^2+1) dx= arctanx + C
Standardintegral
∫1/(√(1-x^2))dx =
∫1/(√(1-x^2))dx = arcsinx + C
∫lnx dx=
∫lnx dx= xlnx-x+C
∫1+(tanx)^2 dx
∫1+(tanx)^2 dx = tanx + C
∫(tanx)^2 dx
∫(tanx)^2 dx = tanx-x+C
∫1+(cotx)^2 dx=
∫1+(cotx)^2 dx= -cotx + C
∫(cotx)^2 dx
∫(cotx)^2 dx = -cotx-x+C
∫arcsinx dx=
∫arcsinx dx= xarcsinx + √(1-x^2) + C
∫arctanx dx=
∫arctanx dx= xarctanx-1/2 * ln(x^2+1) + C
∫a^x dx=
∫a^x dx= a^x/lna + C , a>0, a≠1
∫^a logx dx =
∫^a logx dx = x* ^alogx - x* ^aloge + C
∫1/(√(x^2+1) dx =
∫1/(√(x^2+1)) dx = ln(√(x^2+1)+x) +C
∫√(x^2+1) dx =
∫√(x^2+1) dx = 1/2 * x√(x^2+1) + 1/2 * ln(√(x^2+1)+x) + C
Räkneregel
∫(f’(x)/f(x)) dx =
∫(f’(x)/f(x)) dx = ln |f(x)| + C
Räkneregel
∫f(ax+b)dx =
∫f(ax+b)dx =1/a * F(ax+b) + C (a≠0)
Räkneregel
∫( f(x)+g(x))dx=
∫( f(x)+g(x))dx= ∫f(x)dx + ∫g(x)dx + C
Räkneregel
∫kf(x)dx=
∫kf(x)dx= k∫f(x)dx +C
Partiell integration
∫f(x)g(x)dx =
∫f(x)g(x)dx = Fg - ∫F(x)g’(x)dx
Variabelsubstitution
∫f(g(t))g’(t)dt=
∫f(g(t))g’(t)dt= ∫f(x)dx , x=g(t) och g injektiv