Lecture 4 Flashcards
the probability of a binary question depends on…
sensitivity
specificity
prevalence
base rate neglect =
the failure to take prevalence into account
-> type of fallacy in which people tend to ignore the base rate (e.g., general prevalence) in favor of the individuating information (i.e., information pertaining only to a specific case)
bij een lage prevalentie kan een mega goede test nog steeds valse resultaten genereren
bayes theorem =
states that the conditional probability of an event, based on the occurrence of another event, is equal to the likelihood of the second event given the first event multiplied by the probability of the first event.
bayesian inference =
hypotheses that predict the data relatively well receive a boost in credibility, whilst hypotheses that predict the data relatively poorly suffer a decline.
wat is het verschil tussen general model en bayesian inference
general model: met sensitivity and specificity. state of the world -> predictions -> data
bayesian inference: wishes to invert the generative model. data -> state of the world (given this data, what can we conclude about the state of the world)
wat zijn de belangrijkste factoren van bayesian
positive predictive value and negative predictive value
sensitivity=
if you have the disease, what is the probability of a positive test
= hit rate
specificity=
given you do not have the disease, what is the probability of a negative test
= correction rejection
ezelsbruggetje sensi en speci
sensitivity = v van vinkje, dus gaat over positieve testen
positive predictive value =
given that the test is positive, what is the probability of having the disease
negative predictive value =
given that the test is negative, what is the probability of not having the disease
dus wat is het verschil tussen sensitivity/specificity en positive/negative predictive values
sensi/speci = state of the world -> data
positive/neg predic values = data -> state of the world
dus wat is het verschil tussen sensitivity/specificity en positive/negative predictive values
sensi/speci = state of the world -> data
positive/neg predic values = data -> state of the world
welke formule hoort dan bij sensi/speci
P(A|B)
welke formule hoort bij predictive values
P(B|A)
hoe heet de error van p(a|b) en p(b|a)
transposing the conditional
hoe interpreteer je P(A|B)
kans dat je a krijgt als je b hebt
hoe interpreteer je P(B|A)
kans dat je b krijgt als je a hebt