Lecture 2 Flashcards

You may prefer our related Brainscape-certified flashcards:
1
Q

wat zijn de componenten van de network theory

A

symptom network A, symptom network B, bridge symptoms, external field. network is made up of links and nodes.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

wat is het idee van network theory

A

symptoms of mental disorders are components in a system that influence each other, you get feedback cycles in these networks of problems that keep on activating each other.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

low connectivity system =

A

desired network, because if someone develops a symptom (insomnia bv) they wont immediately develop all other problems.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

how does a low connectivity network behave

A

linearly: more stressors (external activation) in the network drive leads to higher symptom activation levels. if the stressor decreases, the symptoms decrease -> network moves back to its original state

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

high connectivity of symptom network

A

symptoms are connected, undesired because if they get one symptom, high probability that other symptoms will occur as well.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

more stressors in high connectivity network =

A

higher levels of symptom activation. if the stressor decreases, the network does not move back to its original state. all symptoms can continue to feed on each other.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

even kijken naar schrift getekend

A

oke

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

wat zie je bij states in een low connectivity model

A

state of this network is ball, if a perturbation hits the ball, it can go up, but without the external source the ball rolls back to the bottom of the well (the stable state).

dus… er kan wel een slechte invloed/verstoring zijn, maar als de external state goed is dan komen er geen symptoms. voorbeeld hiervan is mourning, grief. zonder external state zou dat gevoel er ook niet zijn. as time goes by, you will return to baseline

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

wat zie je bij states in een high connectivity model

A

if the ball in the bottom of the well (stable state A) is perturbed, and it crosses the tipping point, then the ball will role to stable state B. (dus hier is een tweede stable state. als je stress weghaald bij een weakly connected network, gaat het gewoon terug. maar bij een strongly connected network rolt het niet terug naar zijn originele staat, omdat er 2 staten zijn).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

wat laat dit verschil in states zien over mental disorders

A

maybe mental disorders arent latent variables we need to figure out, but they are alternative stable states that are generated by the way many different symptoms interact together.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

hoe is hysteresis bij weakly connected network

A

black and green lines overlap. green is where you go up, black is where you go down. als je in het zwarte gedeelte zit is het dus heel makkelijk om terug te gaan naar het groene gedeelte.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

hoe is hysteresis bij strongly connected network

A

bij strongly connected moet je weer helemaal terug naar beneden gaan om het netwerk terug naar boven te krijgen. there is an inaccessible zone where the network can be. the symptoms are fueling each other, and keeping them in the active state => you need much more energy to break that.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

hysteresis =

A

hard to return to the previous stable state.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

2 woorden van weakly connected networks

A

resilient
spontaneous recovery

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

2 woorden van strongly connected networks

A

vulnerable
hysteresis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

wat laat hysteresis dus zien in mental disorders

A

dat iemand vast zit in een mental disorder, want elke keer dat ze iets proberen op te lossen komt er iets anders voor in de plaats.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

the hysteresis effect occurs when you have… (2 factors)

A
  • positive connections (one problem leads to another problem)
  • network is connected (can reach every node from every other node)
18
Q

mental disorders are…

A

alternative stable states in a symptom network.

19
Q

dus basically comorbiditeit komt door

A

symptomen die elkaar versterken en tot nieuwe disorders lijken

20
Q

mental disorders are due to

A

local hyperconnectivity of the symptom network in combination with perturbations. this leads to a netwrok getting stuck in the alternative stable state of the mental disorder.

21
Q

whether the shift to the alternative stable state of the mental disorder is permanent, depends on..

A

the size of the hysteresis effect

22
Q

if the symptom network is huge…

A

many problems activate each other -> mental disorders are harder to treat.

23
Q

if the symptom network is smaller…

A

some links can be removed or interventions can be placed on nodes -> mental disorders may be easier to treat.

24
Q

wat was de eerste software voor deze binary data

A

IsingFit

25
Q

wat kunnen we nu met de software

A

binary, continuous and categorical data

26
Q

wat voor verschillende nodes heb je

A

peripheral is minder belangrijk (depressie: insomnia and fatigue) en central is meer belangrijk (depressie: worthlessness and death)

27
Q

hoeveel connections bij p nodes

A

(p*(p-1))/2

28
Q

hoeveel thresholds bij p nodes

A

= p

29
Q

p betekent

A

aantal nodes

30
Q

hoeveel cellen bij p als het binary is

A

2^p

31
Q

wat doet het elasso algoritme

A

uses a series of piecewise regressions, each variable features a dependent variable and then the rest is independent. dit gaat zo door.
try to predict one variable from all others, and try to see which of the other variables improve the prediction. try including only variables that improve the prediction enough to justify including the parameter.

32
Q

wat betekent neighbourhood

A

when variable x is included in the prediction for y, we say that x is in the neighbourhood of y

33
Q

network approach can be applied to…

A
  • modeling external shocks
  • examining long-term changes and pathways
  • analyzing the effects of interventions
  • networks and genetics
34
Q

how to assess robustness in a network

A
  1. assume the estimated network is true
  2. simulate repeatedly from the network
  3. evaluate the expected replicability between the networks estimated on different samples
  4. assess what proportion present links would be expected to be picked up (sensitivity)
  5. assess what proportion of absent links would be expected to be correctly deemed absent (specificity)
35
Q

wha to complex systems do in the neighbourhood of a transition

A

complex systems slow down -> their state at time t becomes a better predictor of their state at time t+1

36
Q

hoe heet dit fenomeen van complex states die betere predictors worden

A

autoregression

37
Q

wat betekent autoregression voor individuals

A

individuals closer to a transition should slow down (have higher autoregression)

38
Q

early warning signs occur when then the transition happens. if ppl keep cutting down a rainforest, than resilience of the rainforest to random pertrbations decreases over time. if vulnerability increases and resilience continues to go down, there is a point at which the system starts recovering from perturbations in a slower way

A

oke

39
Q

critical slowing down refers to a signla that may characterise psychopathology networks before…

A

transition to an alternative stable state

40
Q

what is the big question now

A

how can we connect the theoretical models to data models