Integrals Flashcards
The Antiderivative
A derivative in reverse.
The antiderviatve of ƒ(x) is F(x).
Every function has an infinte number of antiderivatives (+C).
When you take the intgral (or anitderivative) of a function of x, you always add the term dx to the integand. (or dy if it’s a function of y, etc.)
U-Substitution
In its most basic form, u-substitution is used when an integral contains some function and its derivative, that is, for an integral of the form ∫(f(x)f’(x)dx). The integration is achieved by rewriting the integral in a form that makes it easier to read. Here, let u=f(x). Then du/dx=f’(x), so, we can say du=f’(x)dx and the integral becomes ∫(udu). This integral can now be easily evaluated; we know ∫(udu)=(u2)/2 + C . The substitution is then reversed, giving us (f(x))2/2+ C.
Integration by parts
∫u dv =
uv – ∫v du
∫k du
ku + C
∫un du
un+1 / (n+1) + C
∫ du/u
ln |u| + C
∫eu du
eu + C
∫lnu du
u lnu – u + C
∫au du
1/ lna • au + C
∫sin(u) du
-cos(u) + C
∫cos(u) du
sin(u) + C
∫tan(u) du
-ln|cosu| + C
ln|secu| + C
∫cot(u) du
ln|sinu| + C
∫sec(u) du
ln|secu + tanu| + C
∫csc(u) du
-ln|cscu + cotu| + C