Derivatives Flashcards
The Difference Quotient
(slope of the secant line)
( ƒ(x1 + h) – ƒ(x1) ) / h
The definition of the derivative
(the slope of the tangent line)
ƒ’(x1) =
limh→0 ( ƒ(x1 + h) – ƒ(x1) ) / h
d/dx [u•v]
(The Product Rule)
u’ • v + v’ • u
d/dx [u/v]
(The Qutient Rule)
(u’ • v - v’ • u) / v2
d/dx ƒ(g(x))
(The Chain Rule)
ƒ’(g(x)) • g’(x)
If y = y(v) and v = v(x), then dy/dx =
dy/dx = dy/dv • dv/dx
d/dx [ku]
(k = constant, u = variable)
k • du/dx
d/dx [k]
0
d/dx k/u
-k / u2 du/dx
d/dx k√u
k / ( 2 √u ) du/dx
d/dx [au]
au • ( ln(a) ) du/dx
d/dx eu
eu du/dx
d/dx [ln u]
1 / u du/dx
d/dx [logbu]
1 / ( u ln(b) ) du/dx
d/dx [sin(u)]
cos(u) du/dx
d/dx [cos(u)]
-sin(u) du/dx
d/dx [tan(u)]
sec2(u) du/dx
d/dx [cot(u)]
-csc2(u) du/dx
d/dx [sec(u)]
sec(u) • tan(u) du/dx
d/dx [cscu]
-cscu•cotu du/dx
d/dx [sin-1(u)]
1 / √ ( 1 – u2 ) du/dx
d/dx [cos-1 (u)]
-1 / √ ( 1 – u2 ) du/dx
d/dx [tan-1(u)]
1 / ( 1 + u2 ) du/dx
d/dx [cot-1(u)]
-1 / ( 1 + u2 ) du/dx

