Glaucoma laser Flashcards
Définition de l’abréviation LASER
Light Amplification by Stimulated Emission of Radiation
Propriétés d’un laser (x5)
Monochromatic
Coherence
Directionality
Polarization
Intensity
Interactions Laser-Tissue (x3)
PHOTOCOAGULATION : selective absorption of light energy and conversion of that energy to heat, with subsequent thermally included structural change in the target. Ex. ARGON
PHOTODISRUPTION : High-peak-power pulsed laser to ionize the target and rupture the surrounding tissue. Explosive disruption of tissue to create an excision. Ex. YAG
PHOTOABLATION : Break the chemical bonds that hold tissue together - vaporizing the tissue. Ex. EXCIMER LASER
Indications d’un iridotomie au laser (x3)
Pupil block angle closure
Narrow/occluable angles
Pigment dispersion syndrome/glaucoma
Contre-indications relatives de l’irodotomie au laser (x5)
Flat anterior chamber
Completely sealed angle
Angle-closure due to primary SYNECHIAL closure
Uncooperative patient
No view (corneal edema, corneal opacification)
Gouttes à administrer pré-iridotomie au laser
Pilocarpine 2% (4% si iris foncé)
Alphagan/Apraclonidine
Topical anesthetic
Site(s) de l’iridotomie au laser
Iris crypt
Area of thinning (choisir l’endroit le plus mince possible)
Temporal > Nasal (En supérieur : Dysphotopsie)
Éviter 3h et 9h : entrée des nerfs ciliaires
Laser(s) utilisés pour iridotomie
YAG laser : le PLUS commun
- Lower closure rate compared to Argon
- Less energy compared to Argon
Argon : can be used to PRE-treat thick iris prior to YAG
Post-operative care d’un glaucoma laser
IOP check 1-3 hours post-laser
Stéroïdes topiques : q2h x 2 jours, QID x 5 jours puis plus longtemps prn si persistance inflammation
Check IOP, AC reaction, patency 1-4 weeks after laser
Complications de l’iridotomie au laser
IOP spike (le plus fréquent)
- 30-40% > 10 mmHg within 1-3 hours post LPI
- Uncommon with alpha-2 agonist prophylaxis
- Risk : increased baseline IOP, PAS > 180°
Anterior uveitis
Diplopia and glare
Hemorrhage
- 50% avec YAG, rare avec Argon
- FdR : rubeosis, anticoagulants, uveitis
Corneal damage
Pupillary abnormalities
Posterior synechia
Lens opacities (progression of cataract)
Closure of iridotomy
Retinal damage
Types de Laser Trabeculopasty
Argon Laser Trabeculoplasty (AL)
Selective Laser Trabeculoplasty (SLT)
Micropulse Diode Laser Trabeculoplasty
Titanium Sapphire Laser Trabeculoplasty
Pattern Scan Laser (PASCAL) Trabeculoplasty
Indications de la trabeculoplasty
Open angles
Adjunctive or 1st line treatment
OHTN (ocular hypertension)
POAG (primary open angle glaucoma)
PXG/PXF (Pseudoexfoliative glaucoma)
PDG/PDS (Pigmentary Glaucoma/Pigment Dispersion Syndrome)
NTG
Steroid induced
Mécanisme d’action du ALT
Increased phagocytotic activity
Decreased resistance to outflow (increased DNA replication of cells + increased metallo-poteinase levels whitin trabecular meshwork)
Evidence of ALT
20-30% IOP reduction in 75-85%
Efficacy decreases by 50% over 5 years, and 32% over 10 years
Repeat ALT success rates : 21-70% with additional decreased success over time (DONC pas vrmt répétable)
Largest IOP reductions and earlier failures noted in PXG
Complications laser trabeculoplasty
IOP spike 30-50% (higher avec ALT, PDS/PDG)
Uveitis
Peripheral anterior synechia (PAS) formation (more common with ALT)
CME (rare)
Subretinal fluid (rare)
Choroidal effusion (rare)
Mécanisme d’action du SLT
Selective photothermolysis with marked absorption by melanin pigment granules : avoid thermal damage to surrounding non-pigmented cells
Lower energy than ALT
(En pratique, on utilise plus SLT que ALT)
Evidence of SLT
Succès rate over 70% achieved up to 30 months after treatment
Effective as using prostaglandins in first time treatment
REPEATABLE after prior SLT, even if initial response was limited
Pre-treatment with PGAs associated with decreased IOP-lowering response
Anti-inflammatory drops after SLT do not cause a significant reduction in inflammation or altered IOP lower efficacy