Från Tentor Flashcards
Consider the regression model above and say that the outcome is binary (either zero or one). Your
regression estimate, 𝛽1̂ = 0.05. How do you interpret this estimate?
The treatment increased Y by 5 percentage points.
Which of the following statements is correct regarding measurement errors?
A. Random measurement error in the outcome variable leads to inconsistent and biased estimates.
B. Random measurement error in the treatment variable leads to attenuation bias.
C. Random measurement error in the treatment variable only increase standard errors.
D. Random measurement error is not a problem in any variable as long as it is strictly random.
B. Random measurement error in the treatment variable leads to attenuation bias.
Including outcome variables in a regression model as control variables is:
C. Problematic as it can lead to bias in the estimated coefficient of interest.
𝐶𝑟𝑖𝑚𝑒𝑖𝑡 = 𝛽0 + 𝛽1 𝑃𝑜𝑙𝑖𝑐𝑒𝑖𝑡 + 𝜖𝑖𝑡
Write down the fixed effects regression model based on the regression model above.
Based on this equation, describe what kind of problem you can potentially solve using fixed effects compared to the equation above?
What kind of problems can a fixed effects model not solve? (5 points)
Här inkluderar vi αi i stället för b0.
Som är fixerade effekter saker som är konstant över tid men som varierar mellan stater.
Vi kan ocksåp addera λt som är saker som är konstant över stater men som varierar över tid.
𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡 = 𝛽0 +𝛽1𝑇𝑖 +𝛾1(𝑇𝑖 ∗𝑌𝑟1990)+𝛾2(𝑇𝑖 ∗𝑌𝑟1993)+𝛾3(𝑇𝑖 ∗𝑌𝑟1999)+𝜆𝑡 +𝛼+ui
Vilken koefficient visar den kausala effekten av behandlingen?
1999 var behandlingen
γ3
Det är skillnaden mellan de som fick behandlingen och de som inte fick det.
In an IV setting, I can show that my instrument is unrelated to pre-determined variables using regression
models. Which argument can these results strengthen?
Att den är exogen
The average marginal effect in the model ln Y = β0 + β1X + β2X^2 can be formulated as…..
β1 + 2β2Xbar^2
Consider the following equation: 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝑢𝑖, whmostly interested in 𝛽1. Leaving 𝑋2 out of the equation is a problem only if…….
𝛽2 ≠ 0 and 𝑋2𝑖 is correlated with 𝑋1t.. b2 ≠ betyder att x2 har en effect på y.
A proxy variable is used…..
to decrease or remove the omitted variables bias from the estimated
coefficient of the variable of interest.
Regression discontinuity requires that….
There is no discontinuity in the density of the running variable at the threshold.
A measurement error in 𝑋𝑖 is similar to the omitted variables problem imaking our point estimates inconsistent. ?
Yes
If the true β1 is positive, random measurement error in the independent variable X will
Underestimate β1
Varför skiljer sig IV estimat från OLS estimat?
The IV estimate is going to be larger than OLS because the numerator>denominator in the IV model, which is Cov(Y,Z)/Cov(X1,Z). It’s either that the numerator is blowing up, because there is a connection between Z and X1, or the first stage is weak.
Om en förändring i vår X variabel på 10% ger en minskning i Y på -2. Vad är då β1?
Givet Y = β0 +β1X1 + e
Y = -2
β0 är okänd, så vi skippar den.
X1 = 10
-2 = β1(10)
Lös ut β1
β1 = -2/10
β1 = 0,2
Vad händer om vi har mätfel i X?
Vårt b1 estimat går mot noll! ”Bias towards zero”.