Expected Utility Flashcards
What is risk?
Refers to situations in which the probabilities are given
What is uncertainty?
Refers to situation where the probability are subjective
What is a Simple Lottery?
Is a probability distribution over Z. That is p1,…, pn ≥ 0 and Σpi = 1
What is p(z)?
Probability assigned by lottery L to the outcome z in Z
What is a compound lottery?
A probability distribution over a finite set of simple lotteries.
That is
(p1,…, pk, α1, …, αk) with αk ≥ 0 and Σαk = 1
Can we reduce a compound lottery to a simple lottery?
Yes
What is consequentialism?
≽* satisfies consequentialism if for any two compound lotteries L = (p1,…, pk, α1, …, αk) and L’ = (p1’,…, pk’, α1’, …, αk’) such that
Σαkpk(z) = Σαk’pk’(z)
for all z, we have L ~* L’
State the Von-Neuman Axioms
1) ≽ is rational
2) Independence: p ≻ q then αp + (1-α)r ≻ αp + (1-α)r
3) Archimedianity (VNM continuity): If p ≻ r ≻ q then there exists α, β in (0, 1) such that
αp + (1-α)q ≻ r ≻ βp + (1-β) q
What does the independence implies?
Indiference curves are linea and parallel
Apresente o teorema da Utiliade Esperada
Uma relação ≽ satisfaz os axiomas de Von-Neuman se e somente se existe uma função u tal que
p ≽ q ⇔ Σu(zn)p(zn) ≥ Σu(zn)q(zn)
u é única menos positive affine transformations
Assuma ≽1 e ≽2, então se as preferências satisfazem VnM axioms então
Existe p e q tais que p ≻1 q ≻2 p
Apresente a propriedade de scalar monotonicity
para p ≻ q e α > β então
αp + (1-α)q ≻ βp + (1-β)q
Apresente a propriedade de ≽ - independence
Se p ≽ q => αp + (1-α)r ≽ αq + (1-α)r
Apresente o teorema de extreme lotteries
Existe b,w tais que
b ≽ p ≽ w
Apresente a propriedade de unique solvability
Existe α* tal que para p ≻ r ≻ q temos
α* * p + (1-α*) q ~ r
Apresente a propriedade de linear representation
The function V: Δ -> [0,1] defined by V(p) = sup{α∈[0,1] | p ≻ α*δzbarmax + (1-α)*δzbarmin for each p in Δ Representes ≽ and is linear: V(αp +(1-α)q) = αV(p) + (1-α) V(q)