Ecuaciones diferenciales Flashcards

1
Q

Define ec. homogénea de primer orden

Cómo resolverla

A

y’=f(y/x)
Se resuelve con u=u/x
->u’x+u=f(u)

NO confundir con “homogénea” en el caso lineal, que significa que no hay R(x) solo

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Define ec. lineal homogénea

A

La que no tiene funciones R(x) sin ‘y’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Condición para ec. exacta

A

P(x,y)dx + Q(x,y)dy = 0

exacta sii dP/dy=dQ/dx (dvp)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Ec. lineal

Solución

A

y’=a(x)y+b(x)

y=exp[int(a(x)dx)] es el F.I.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Bernoulli. Su objetivo.

A

Bernoulli cambia la ec. dada a una lineal.
y’=a(x)y+b(x)y^γ
u=y^1-γ
u’=(1-γ)(a(x)u+b(x)) [lineal]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Ricatti

A

y’=a(x)y^2+by+c
sea y1 una sol conocida
u=y-y1 es Bernoulli con γ=2
u’=(2ay1+b)u+au^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Diferencia entre Ricatti y Bernoulli

A

Ricatti tiene una función c(x) sin y

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Solución ec. exacta

A

Tenemos dvpF/dx=dvpF/dy

Encontrar función “potencial” F

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What if an equation isn’t quite exact?

A

You find an IF that’s only a function of x (resp. y) that makes it exact.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Give formula for 2nd order linear inhomogeneous DE

When’s it homo?

A

y’‘+Py’+Qy=R
where capital letters are all functions of x
Homo if R=0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Razonamiento para resolver ec. inhomogénea lineal de 2do orden

A

Hacer que R(x)=0. Ahora es homo. Esta ec. tiene una solución general yg=ay1+by2. La hallamos.
Entonces la sol. general de la inhomo es, si tenemos una de sus soluciones particulares (yp),
y=yg+yp

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Cómo ver que dos soluciones son L.I.?

A

Que su cociente no sea cte

o usar el wronskiano, pedante

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Idea para resolver lineales de 2do orden homogéneas

A

Considerar la solución y=exp(mx), derivar dos veces. Queda un pol. entre paréntesis.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Casos para resolver lineales de 2do orden homogéneas

A

Tres casos de raíces
1) Reales y distintas
y=c1exp(m1x)+c2exp(m2x)

2) Complejas distintas
y=exp(ax)(c1cosbx + c2sinbx)

3) Reales iguales
y=c1exp(mx)+c2exp(mx)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Coefs. indeterminados para un seno (resp. cos)

A

yp=Asenbx+Bcosbx

Si falla, agregar una x multiplicando todo el RHS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Coefs. indeterminados para un polinomio

A

yp=A+Bx+…Kx^k

siendo k el grado del pol.

17
Q

For higher order DEs, start by…

A

Pol. característico for the HOMO EQ.. Then, write solutions as exponentials, adding x as a coeff. when its m>1. That’s the general solution.

18
Q

xp if λ = -1+-2

A

e^-t (c1cos2t+c2sin2t)

MIND the ts in cis!

19
Q

xp if λ = -1 with μ=3

A

(c1+c2t+c3t^2) e^-t

20
Q

xg if λ = -1 and RHS is e^-t

A

Ate^-t

21
Q

Little formula for xp ito exp

A

c x^k exp(μx)
k only comes into play if some λ is the coeff of the RHS exp. Else, it’s as if you had an extra e^0x on the RHS, and so xg has x^0=1

22
Q

If RHS is t, is xg always (A+Bt)?

A

Not if λ=0, that’s like having RHS=t e^0t which merits a t

23
Q

Steps exponencial matricial

A
  • Sol homo.
  • Matriz wronskiana en x=0
  • Invertirla
  • A^-1 (I A)
  • e^Ax = (sol homo)(paso anterior)
24
Q

Si λ=3 (doble), que entra en la matriz wronskiana?

A

e^3x+xe^3x

en la primera fila claro

25
Q

When writing cosz (resp. sinz), don’t forget…

A

the i on the exps

26
Q

Si la raíz de la homo coincide con la a de exp(ax), y la parte inhomo es xe^ax, hallar xp

A

xp = (Ax+B) x exp(ax)

27
Q

When integrals with pols in the den., don’t forget to…

A

Factorizar

28
Q

Before you turn some exp(z)=ic into a log, try doing what to c?

A
Put it in exp form (see if they're known values of cis)
So now, ic=rexp^(arg)
Then log(r) + (θi+2kπi)