Compartiments liquidiens (1/3) Flashcards
Définir molalité.
Molalité (concentration molale):
nombre de moles de soluté par masse de solvant, càd par kg de solvant (mole/kg)
Définir Molarité.
Molarité (concentration molaire):
nombre de moles de soluté par volume de solution, càd par litre de solution (mol/L)
Définir osmolarité:
Osmolarité:
Nombre de particules individuelles par litre de solution (osm/L)
Définir osmolalité:
Osmolalité:
Nombre de particules individuelles de soluté par kg de solvant. (osm/kg)
Indiquer dans quelles conditions molarité et molalité sont équivalentes. Expliquer brièvement votre réponse
Lorsque le solvant est l’eau (1L d’eau = 1kg d’eau)
Si la solution est très diluée (solution idéale), alors la molarité et la molalité sont égales. Poids et volumes des solutés négligeables, donc 1 L de solution = 1 L d’eau = 1kg d’eau.
Molarité = Molalité
Indiquer dans quelles conditions molarité et osmolarité sont équivalentes. Expliquer brièvement votre réponse
Lorsque le soluté est un non électrolyte qui ne se dissocie pas en solution (n=1), alors osmolarité = molarité
osmolarité=molarité [n.y+(1-y)]
n.y est le nombre de particules dissociées
(1-y) est le nombre de particules non dissociées
Indiquer dans quelles conditions molalité et osmolalité sont équivalentes. Expliquer brièvement votre réponse
Lorsque le soluté est un non électrolyte, il ne se dissocie pas en solution
(n=1). L’osmolarité= molarité.
** osmolarité=molarité [n.y+(1-y)]**
**osmolalité. ρ = osmolarité **
**osmolalité. ρ = molalité.[n.y+(1-y)]. ρ **
En conclusion, si le soluté n’est pas un électrolyte alors l’osmolalité=molalité.
Indiquer dans quelles conditions osmolarité et osmolalité sont équivalentes. Expliquer brièvement votre réponse
Lorsque le solvant est l’eau (1L d’eau = 1kg d’eau),
si une solution est très dilutée (solution idéale), alors osmolarité = osmolalité.
Poids et volume des solutés sont négligeables, donc 1L de solution = 1L d’H2O soit 1kg d’eau.
Indiquer dans quelles conditions molarité et molalité sont différentes. Expliquer brièvement votre réponse
Lorsque le solvant est l’eau (1L d’eau = 1kg d’eau)
si la solution n’est pas diluée, alors molalité > molarité.
Le poids et le volume des solutés ne sont plus négligeables, donc 1 L de solution contient un volume moindre d’H2O et donc moins d’1 kg d’eau.
La molarité ne tient pas compte du volume des solutés.
Indiquer dans quelles conditions molarité et osmolarité sont différentes. Expliquer brièvement votre réponse
Lorsque le soluté est un électrolyte qui se dissocie en solution, le nombre de particules (n) résultant de la dissociation est >1.
osmolarité n’est pas équivalente à molarité
osmolarité=molarité [n.y+(1-y)]
n.y est le nombre de particules dissociées
(1-y) est le nombre de particules non dissociées
Indiquer dans quelles conditions molalité et osmolalité sont différentes. Expliquer brièvement votre réponse
Lorsque le soluté est un électrolyte qui se dissocie en solution, le nombre de particules (n) résultant de la dissociation est >1.
osmolarité= molarité. [n.y+(1-y)]
Lorsque le solvant est l’eau (1L d’eau= 1kg d’eau), si la solution n’est pas diluée alors osmolalité> osmolarité, et la molalité>molarité.
De ce fait osmolalité et molalité seront différentes.
Indiquer dans quelles conditions osmolarité et osmolalité sont différentes. Expliquer brièvement votre réponse
Lorsque le solvant est l’eau (1L d’eau=1kg d’eau),
si la solution n’est pas diluée, alors osmolalité > osmolarité.
Poids et volumes des solutés ne sont alors plus négligeables, 1L de solution contient un volume d’H2O moindre, et donc moins d’1kg d’H2O.
Dans le cas du plasma, on utilise régulièrement l’osmolarité et l’osmolalité de façon interchangeable. Expliquer pourquoi il n’est cependant pas souhaitable de procéder de la sorte.
Les liquides corporels ne sont pas des solutions idéales et au niveau du plasma environ 7% du volume est occupé principalement par des protéines, donc l’osmolarité est différente de l’osmolalité.
Cependant osmolarité et osmolalité sont souvent utilisées de façon interchangeable en considérant, par approximation les liquides biologiques comme des solutions aqueuses diluées.
Pour le plasma il est préférable d’utiliser l’osmolalité (non influencée par le volume des solutés).
L’osmolalité du plasma est mesurée par abaissement cryoscopique est ~290 mosm/kg H2O
Expliquer le phénomène d’osmose.
L’osmose est le déplacement spontané d’un volume d’eau à travers une membrane semi-perméable, d’un compartiment où l’eau est la plus concentrée vers le compartiment où elle est la moins concentrée.
C’est un processus spontané qui se produit naturellement, sans intervention extérieure, càd sans apport d’énergie extérieure et qui conduit irréversiblement à un état d’équilibre où elle s’arrête.
Ainsi l’osmose est la diffusion de l’eau sous l’effet de son propre gradient qui entraine le déplacement d’un volume de la solution.
Définir la pression osmotique.
La pression osmotique π correspond à la pression hydrostatique qui s’oppose au mouvement d’eau provenant du compartiment le moins concentré en soluté non perméant vers le compartiment le plus concentré en soluté non perméant.
La pression osmotique exercée par une solution est fonction du nombre de particules libres en solution qu’elle contient, indépendamment de leur taille, de leur masse ou de leur valence.
Elle est exprimée par la relation de Van’t Hoff en mmHg (ou atm).
Expliquer brièvement comment la pression osmotique peut être mesurée.
Deux méthodes permettent de mesurer la pression osmotique:
- tube en U:
Un tube en U contenant une membrane semi perméable qui sépare deux compartiments contenant chacun deux solutions de concentrations différentes en soluté non perméant.
L’eau va se déplacer du compartiment le moins concentré vers le compartiment le plus concentré en soluté non perméant.
La pression osmotique est donc la pression hydrostatique qui s’oppose à ce mouvement.
-
Modèle du piston et de la membrane semi-perméable
Un compartiment E contient de l’eau pure et est ouvert vers l’atmosphère tandis que le compartiment I est fermé par un piston mobile et contient un soluté i non perméant.
L’osmose entraine un déplacement de volume d’eau du compartiment E dont le volume diminue vers le compartiment I dont le volume augmente et déplace le piston.
La pression qui doit être appliquée sur le piston afin d’empêcher le flux volumique est la pression osmotique.
Indiquer la formule permettant de calculer la pression osmotique.
Relation de Van’t Hoff détermine la pression osmotique (π)
π=i.R.T.C
- π en mmHg (ou atm)
- C: concentration molale (mole/kg H2O)
- i: coeff de Van’t Hoff, indique la proportion de particules libres:
- i= n.y+(1-y)
- soit i= 1 pour non électrolytes, et >1 pour électrolytes se dissociant
- y: le coeff d’activité
- y=1 pour solution idéales très diluées
- y<1 pour solutions non idéales
- n: le nombre de particules résultant de la dissociation
- R constante des gaz parfaits 0,0821 dm3.atm.K-1.mole-1
- T température, en K