Chapter 5 - Matrix algebra Flashcards

1
Q

In a square matrix of order n, what is the diagonal containing the elements a11, a22, a33, …, ann called?

A

It’s called the principal/main/leading diagonal

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

What is the trace of a square matrix?

A

The trace of a square matrix is the sum of the elements of the leading diagonal.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

What is a unit matrix?

A

A unit matrix is a square matrix where every element is zero, except for the leading diagonal, where the elements are 1.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What is a transposed matrix?

A

A transposed matrix is the matrix with elements bij = aji

See picture

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

How do you add/subtract two matrices? Are there any rules for when matrices can be added/subtracted?

A

You sum two matrices by adding/subtracting their relative elements. Only matrices of the same dimension can be added/subtracted.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

How do you multiply a matrix with a scalar?

A

You multiply every element in the matrix with the scalar.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Multiplying two matrices together?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Consider the two matrices A, with dimension m x p, and B, with dimension p x n.

What is the dimension of the matrix that is the product of A * B?

In general, what is the condition for products of matrix multiplications to be defined?

A

A * B produces a matrix with the dimension m x n.

For the product of A * B to be defined, the number of columns in A must equal the number of rows in B.

E.g:

A2x3 * B3x3 is defined

(but B * A is not defined)

C2x3 * D2x3 is not defined

E3x2 * F3x2 is not defined

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Hva er Gauss-Jordan-eliminasjon? Hvilke tre regler brukes?

A

Gauss-Jordan-eliminasjon er en regnemåte for å løse ligningssystemer. De tre reglene:

  1. Vi kan multiplisere en ligning med et tall ulikt null.
  2. Vi kan bytte om på to ligninger
  3. Vi kan ta et multiplum av en ligning og legge til en annen ligning.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Hvilken metode kan vi bruke for å løse ligningssystemet i bildet?

A

Gauss-Jordan-eliminasjon

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Gitt ligningsystemet

x + 2y = 4

3x - y = 5

Hva er koeffisientmatrisa?

A

Koeffisientmatrisa er gitt av koeffisientene til variablene på venstre side av ligningen:

1 2

3 -1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Hvis determinanten til koeffisientmatrisa til et ligningssystem er ulik null, hva sier det om ligningssystemet?

Hva hvis determinanten er lik null?

A

Hvis determinanten er ulik null har ligningssystemet nøyaktig én løsning. Hvis lik null, har den enten ingen løsning eller uendelig med løsninger.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Hva er betingelsen for at en matrise skal være invertérbar?

A

Determinanten til matrisa (til koeffisientmatrisa) må være forskjellig fra null.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Hva er formelen for å finne den inverse matrisa til 2x2-matrisa A?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Hvordan finner man den inverse til 3x3-matrisa A?

A

To metoder:

  1. Gauss-Jordan:

Vi setter opp en 3x6-matrise, der venstre halvdel er den originale matrisa, og høyre halvdel er enhetsmatrisa. Målet er å “flytte enhetsmatrisa” over på venstre side. Når venstre halvdel er lik enhetsmatrisa er høyre halvdel den inverse av den originale matrisa.

  1. “Matrix of minors”:

Finn “the matrix of minors”

Summér disse determinantene

Konverter ved “the cofactor matrix”:

+ - +

    • -

+ - +

Transponér denne matrisen

Gang den transponerte matrisen med 1/det(A)

Svaret er den inverse matrisa A-1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly