Chapter 10 - Intro to Ordinary Differential Equations Flashcards

1
Q

What is a differential equation?

A

A differential equation is an equation that involves not only algebraic combinatons of the variables occurring in the equation, but also derivatives of those variables with respect to other variables.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

In a differential equation, what are the dependent and the independent variables?

A

The dependent variables are the variables that are differentiated, while the independent variables are those which with respect to differentiation occurs.

In the picture, f is the dependent variable, while x and y are the independent variables.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

What is meant by “the order of a differential equation”?

A

The order of a differential equation is the degree of the highest derivative that occurs in the equation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

How do you tell linear and nonlinear differential equations apart from one another?

A

Linear equations are equations in which the dependent variable or variables and their derivatives do not occur as products, raised to powers or in nonlinear functions,

Nonlinear equations are those that are not linear.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What is the difference between homogeneous equations and nonhomogeneous equations?

A

In homogeneous equations, each term involves the dependent variable or one of its derivatives. In nonhomogeneous equations there is at least one term contains only the indepenent variable or a constant.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

What is meant by the general solution of a differential equation?

A

The general solution is the most general function that will satisfy the differential equation, and will normaly contain a number of arbitrary constants equal to the order of the differential equation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

What is meant by the particular solution of a differential equation?

A

If you are supposed to find a particular solution of a differential equation, you are given values for the variables that you use to find the particular solution.
After finding the general solution, you implement the given values to find the value of the constants.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What is the difference between analytical and numerical solutions to differential equations?

A

Differential equations have analytical solutions if they are solvable by the use of mathematical techniques. If a differential equation is unsolvable by the use of such mathematical techniques, the only way of solving the equation is by the use numerical techniques, leading to a numerical solution.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Solve the differential equation:

18x dx + dy = 0

A
  1. Separate x and y variables to different sides of the equation.

dy = - 18x dx

  1. Integrate both sides.

y = - 9x2 + C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Solve the differential equation:

x2+(x3+12) y ‘ = 0

A

x2+(x3+12) dy/dx = 0

(x3+12)dy/dx = - x2

dy/dx = - x2/(x3+12)

dy = - 1 / (x3+12) * x2dx

Vi setter: u = x3+12

Det gir: du = 3x2dx

1/3 du = x2dx

Setter inn i ligningen:

dy = -1/3 * 1/u * du

Vi integerer begge sider, og får:

y = -1/3 * ln(x3+12) + C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Solve the differential equation:

y ‘ + y = 3

A

dy/dx + y = 3

dy/dx + y - 3 = 0

dy + (y - 3)dx = 0

dy/(y - 3) = - dx

Integrating both sides, we get:

ln(y - 3) = - x + C

eln(y - 3) = e- x + C

y - 3 = Ce- x

y = Ce- x + 3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Find the particular solution of the given differential equation for the indicated values:

dy/dx + 5yx2 = 0; x = 0 when y = 1

A

dy/dx + 5yx2 = 0; y(0) = 1

dy/dx = - 5yx2

dy/y = - 5x2dx

Integrating both sides, we get:

ln y = - 5/3 x3 + C

We substitute the indicated values to find the constant C:

ln 1 = - 5/3 * 0 + C

C = 0

We now solve for y:

eln y = e- 5/3 x³

y = e- 5/3 x³

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Find the solution to the initial value problem:

dx/dt = 4sin(t)/x2 , x(0) = 8

A

dx/dt = 4sin(t)/x2 , x(0) = 8

x2dx = 4sin(t) dt

Integrating both sides, we get:

x3/3 = - 4cos(t) + C

Substituiting in the initial values, we have:

83/3 = - 4cos(0) + C

C = 524/3

We now solve for x:

x3/3 = - 4cos(t) + 524/3

x3 = - 12 cos(t) + 524

x = (- 12 cos(t) + 524) 1/3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Find the solution of the initial value problem:

7t2 dx/dt = 7/x , x(10) = 9

A

7t2 dx/dt = 7/x , x(10) = 9

x dx = 7/7t2 dt

= 1/t2 dt = t-2 dt

Integrating both sides, we get:

x2/2 = - 1/t + C

Substituting in initial values, we get:

92/2 = - 1/10 + C

C = 203/5

Solving for x gives:

x2/2 = - 1/t + 203/5

x2 = - 2/t + 406/5

x = (- 2/t + 406/5)1/2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Solve the differential equation:

4 (xy)1/2 dy/dx = 1 , x, y > 0

A

4 (xy)1/2 dy/dx = 1

4 x1/2 y1/2 dy/dx = 1

4 y1/2 dy = x- 1/2 dx

Integrating both sides, we get:

8/3 y3/2 = 2x1/2

y3/2 = 3/8 * 2x1/2

y = (3/4 x1/2) 2/3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Solve the differential equation:

dy/dx = 9ex - y

A

dy/dx = 9 ex - y

dy/dx = 9 ex e-y

1/e- y dy = 9ex dx

ey dy = 9ex dx

Integrating both sides, we get:

ey = 9ex + C

ln (ey) = ln (9ex) + C

ln (ey) = ln 9 + ln (ex) + C

Since ln 9 is a constant, we can let C1 = ln 9 + C:

ln (ey) = ln (ex) + C

y = x + C

17
Q

Find the function y(x) satisfying

d2y/dx2 = 14 - 30x,

y ‘ (0) = 7 and y(0) = 4

A

d2y/dx2 = 14 - 30x

y ‘ (0) = 7 and y(0) = 4

d2y = (14 - 30x) dx2

Integrating both sides, we get:

dy = y’ = 14x - 15x2 + C1

y ‘ (0) = 7 = C1

C1 = 7

We now have:

dy = 14x - 15x2 + 7

Integrating both sides again, we get:

y = 7x2 - 5x3 + 7x + C2

y(0) = 4 = C2

C2 = 4

Finally, we have:

y = 7x2 - 5x3 + 7x + 4

18
Q

Okei, vi sier det er greit å bytte mellom norsk og engelsk…!

Hva er den karakteristiske ligningen til differensiallikningen

y ‘ ‘ + y ‘ - 2y = 0

?

A

Den karakteristiske ligningen “gjør om” på differensialligningen, slik at deriverte blir til potenser:

Differensialligningen

y ‘ ‘ + y ‘ - 2y = 0

har den karakteristiske ligningen

r2 + r - 2 = 0

19
Q

En karakateristisk ligning med nullpunktene 3 og - 2 har den generelle differensialløsningen y(x) = _____

A

y(x) = Ce3x + De-2x

20
Q

Hvis den karakteristiske ligningen har to forskjellige reelle røtter, r1 og r2, hva er den generelle løsningen av differensialligningen?

A

y(x) = Cer1x + Der2x

21
Q

Hvis den karakteristiske ligningen har reell dobbelrot r, hva er den generelle løsningen av differensialligningen?

A

y(x) = Cerx + Dxerx

22
Q

Hvis den karakteristiske ligningen har to forskjellige komplekse røtter r1 og r2 som er slik at r1 = a + ib og r2 = a - ib

hva er den generelle løsningen av differensialligningen?

A

y(x) = eax(C cos(bx) + D sin(bx))

23
Q

Gitt den inhomogene differensialligningen, finn én løsning.

y ‘ ‘ + 5y ‘ - 9y = x2

A

y ‘ ‘ + 5y ‘ - 9y = x2

Vi prøver med y = Ax2 + Bx + C

y ‘ = 2Ax + B

y ‘ ‘ = 2A

Setter vi inn i ligningen får vi:

2A + 5(2Ax + B) - 9(Ax2 + Bx + C) = x2

2A + 10Ax + 5B - 9Ax2 - 9Bx - 9C = x2

Hvis vi tenker at det på høyre side står:

= x2 + 0x + 0

og sammenligner ledd av samme orden hver for seg, får vi:

-9A = 1 (-9Ax2 = 1x2)

A = - 1/9

10A - 9B = 0

9B = 10A –> B = 10/9 * A –> B = - 10/81

2A + 5B - 9C = 0

9C = - 2/9 - 50/81 = - 68/81

C = - 68/729

Vi bytter nå inn verdiene for A, B og C:

y = - 1/9 * x2 - 10/81 * x - 68/729

24
Q

La y1 og y2 være løsninger av en inhomogen differensialligning y. Hva er y1 - y2 da?

A

y1 - y2 er da den generelle løsningen for den tilsvarende homogene differensialligningen til y

25
Q

Hvordan finner vi den generelle løsningen til en inhomogen differensialligning?

A
  1. Finn den generelle løsningen av den tilsvarende homogene differensialligningen.
  2. Finn en partikulærløsning av den inhomogene differensialligningen.
  3. Den generelle av den inhomogene differensialligningen er summen av disse to løsningene.

y = yp + yh

26
Q

Gitt den homogene tredjeordens differensialligningen

9y ‘ ‘ ‘ - 9y ‘ ‘ - 4y ‘ + 4y = 0

Hvordan finner man den generelle løsningen?

A
  1. Skriv først den karakteristiske ligningen:

9r3 - 9r2 - 4r + 4 = 0

  1. Finn nullpunktene til den karakteristiske ligningen. Siden ligningen inneholder et konstantledd, må man her ofte gjette/finne det første nullpunktet på egen hånd, før deretter å finne de resterende 2 ved polynomdivisjon.

r1 = 1

r2 = 2/3

r3 = - 2/3

  1. Siden den karakteristiske ligningen har 3 forskjellige reelle røtter (i motsetning til trippelrot og komplekse røtter), har den generelle løsningen formen:

y(x) = Aex + Be2/3 * x + Ce- 2/3 * x

27
Q

Finn den generelle løsningen til den inhomogene differensialligningen:

y ‘ ‘ - 3y ‘ + 4y = cos(4t) - 2sin(4t)

A

Vi vet at y = yh + yp

  1. Finner den generelle løsningen til den tilsvarende homogene ligningen.

y ‘ ‘ - 3y ‘ + 4y = 0

1.a. Finner nullpunktene til den karakteristiske ligningen.

r2 - 3r + 4 = 0

r = 3/2 +- i(71/2/2)

1.b. Den generelle løsningen til den homogene ligningen er da:

yh = e3/2 t [C cos(71/2/2 t) + D sin(71/2/2 t)]

  1. Finner en partikulær løsning for den inhomogene ligningen. Vi leser høyresiden av ligningen, og prøver oss med:

yp = E cos(4t) + F sin(4t)

yp ‘ = - 4E sin(4t) + 4F cos(4t)

yp ‘ ‘ = - 16E cos(4t) - 16F sin(4t)

  1. a. Vi setter disse verdiene inn i den originale ligningen.
    - 16E cos(4t) - 16F sin(4t) + 12E sin(4t) - 12F cos(4t) + 4E cos(4t) + 4F cos(4t) = cos(4t) - 2 sin(4t)
  2. b. Vi trekker sammen koeffisientene som står forran cosinus på venstre side av ligningen, og setter dette lik koeffisienten forran cosinus på høyre side.
    - 12E - 12F = 1
  3. c. Vi gjør det samme for sinus.

12E - 12F = - 2

  1. d. Vi summerer disse ligningene, og får:
    - 12E + 12E - 12F - 12F = 1 - 2
    - 24F = -1
  2. e. Vi løser for F og E

F = 1/24

E = - 1/8

2.f. Den partikulære løsningen til den inhomogene ligningen er da

yp = - 1/8 cos(4t) + 1/24 sin(4t)

  1. Vi trekker nå sammen yh og yp for å finne løsningen.

y = yh + yp =

e3/2 t [C cos(71/2/2 t) + D sin(71/2/2 t)] - 1/8 cos(4t) + 1/24 sin(4t)

THE END