Chapitre 11: ICRS et ITRS Flashcards
Capsule classe
Capsule classe
retour sur équations fondamentale
retour sur équations fondamentale
Lors d’observation, définitions de inertiel
que l’étoile observée ne bouge pas par rapport au système.
dans l’image du plan équatorial
8:38
On voit pour les différents systèmes de plan équatorial ceux qui ont le “X” dans la direction du méridien de Greenwich et dans la direction du méridien local, ceux-ci tournent avec la Terre autour de l’axe de rotation.
angles entre méridiens de Greenwich et méridien local?
Longitude Astronomique, elle est CONSTANTE puisque les méridiens tournent avec la Terre
Angle “Ascension droite” (angle alpha)
Angle dans le plan équatorial entre un objet et la direction VERNALE, elle est CONSTANTE
la direction vernale est l’axe X défini par le croisement du plan écliptique et le plan équatorial.
Faire attention: l’angle est constant car la direction vernale ET l’objet (une étoile) sont stable et ne bougent pas.
GST (temps sidéral moyen de Greenwich)
même chose que GMST
est l’angle entre la direction vernale et le méridien de Greenwich. PAS CONSTANT
Celui-ci croit avec la rotation de la Terre autour de son axe.
C’est à la fois un angle et un temps sidéral.
Rappel on peut passer d’une échelle de temps solaire à une échelle de temps solaire
GMST(h)= 6.664420 + 0.0657098242 NJ + 1.0027379093 UT(h)
cette équation relie le temps (UT1) en temps solaire.
Temps sidéral local (LST)
LST = GST + Longitude Astronomique (h)
l’angle qui est à la fois un temps sidéral LST est l’angle entre la direction vernale et le méridien local.
celle-ci n’est pas constante, car méridien bouge avec la Terre, mais pas la direction vernale, on voit l’impact dans la formule, car GST n’est pas contant
Angle horaire (t): 11:00
C’est quoi?
C’est l’angle entre le méridien de l’objet et le méridien local (TRÈS SOUVENT DIRECTION OUEST, gauche)
formule:
LST= Angle entre direction vernale et méridien local
Angle “Ascension droite”(alpha) = angle entre direction vernale et objet
t = LST - Angle “Ascension droite”
Interprétation de l’angle horaire (t):
du point de vue de l’observateur c’est “l’étoile/objet qui bouge”
supposant qu’on restricte le mouvement des méridiens, car aussi non
t= 0, l'objet se trouve sur le méridien local, donc LST = Angle "Ascension droite"(alpha)
t > 0, donne le temps que l’objet va prendre pour se rendre sur le méridien local
t< 0, donne le temps écoulé depuis son passage au méridien local
UNITÉ DE TEMPS EN TEMPS SIDÉRAL
- Transformation système équatorial INERTIEL
vers système équatorial LOCAL
ROTATION EN Z
Xml: X méridien local
Xeq: X direction vernale
rappel: X vers le Sud, Y vers Est
système équatorial inertiel:
X direction vernale
système équatorial local:
X direction méridien local
Xml= Rz (LST)Xeq
- Transformation système équatorial en rotation
vers système horizontal
ROTATION EN Y
XH: Horizontal
14:00
formule rotatiotion autour axe Y
XH= Ry(colat_Latitude ASTRONOMIQUE) Xml
implique aussi passage du Z équatorial vers Z horizontale. qui est dans la direction ZÉNITHAL ASTRONOMIQUE, autrement dit la ligne à plomb.
1.2.Transformation de système équatorial INERTIEL vers système horizontale
rotation Z et Y
15:00
Question prof
on peut utiliser direction ascension droite au lieu de LST
si t est dans le sens horaire?
formule: si ZY, alors écrit c’est Y en premier
XH= Ry (colat_Latitude Astronomique) Rz (LST) Xeq
Autre équation équivalente:
XH= Ry (colat_Latitude Astronomique)Rz (Longitude Astronomique)Rz (GST)Xeq
avec équation de LST= GST + longitude Astronomique
Relation entre LST et angle horaire
démonstration avec rotation 16:00
voir figure “Relation LST et angle horaire”
avec premier rotation autour de l’axe Z
Lors de la deuxieme rotation autour de l’axe Y
elle est en fonction de la latitude, mais ou est la longitude?
Elle se cache dans le -t
Xml= cos(psi) cos (-t)
cos (psi) sin (-t)
sin (psi)
Convention
AZ : azimut NORD
az : aznimut SUD
18:00
AZ = 180 - az z = 90- el
Chapitre 11:
itrs
ITRS dernier est 2014
à présent on a vu des systèmes terrestre fixe:
Axe X sur Greenwich qui tourne avec la Terre.
ICRS
système celeste
ICRS et ICRF avec des réalisation, système de référence inertiel.
définition mathématique de inertiel:
masse * accélération = somme des forces sur un corps
vecteur acc = 2e dérivée de la position.