Beyes III Flashcards
bayesian inference and bayesian hypothesis testing difference
bayesian inference is based on parameter, bayesian hypothesis testing is based on the hypothesis
marginal likelihood in hypothesis testing
bovenaan, gaat over H1
likelihood in hypothesis testing
onderaan, gaat over H0
hoe zie je of iets one sided of two sided is?
straight line = two sided!!!
als het opeens omhoog gaat = one sided!!!
parsimony
the specific predictions, when still accurate, get rewarded more!
how do you choose the prior distribution
baseren op knowledge of previous studies or keep informative
what is the same about the prior distribution and the parameter
it needs to be in the same domain!
which domains are there?
proportion: [0,1]
correlation: [-1,1]
difference in means: [-∞, ∞]
wat meet je bij een bayesian correlation
rho (p)
wat meet je bij een bayesian proportion
theta θ
3 vormen van Ha
H1: p =/= 0
H+: p > 0
H-: p< 0
dus als je een rho ziet, welk domein is dat dan
correlation: -1 tot 1
-> stretched beta distribution
hoe kan je de median krijgen
median = top van grafiek.
meaning that there is a 50% that rho is equal to or lower than the observed correlation
95% credible interval
95% probability that ρ is between … and …, under this model
larger sample size leads to
more narrow likelihood, posterior distribution and credible interval
-> we can make a more specific prediction (with a higher BF), with the same certainty
δ =
delta, cohens d.
staat voor differences between groups