Bayes I Flashcards
statistical model =
general statistical model + statement about the parameter value that describes a certain phenomenon
we can reflect a models’ statement via a …
probability distribution. based on what these models claim about theta, certain outcomes are more or less likely.
models can also state a range of values
binominal distribution!
waar is de beta distribution op gebaseerd
a = successes
b = failures
what if a and b equal 1?
distribution is uniform
what if the a and b are the same
mooie normaal verdeling -> values closer to 0,5 are more plausible.
what if a is smaller than b
piek ligt links -> values below 0,5 are more plausible
what if a is larger than b
piek ligt rechts -> values above 0,5 are more plausible
dus waar ligt de piek van de binominal grafiek
aan de kant met het LAAGSTE getal
wat is P(O)
prior knowledge, things we think BEFORE seeing the data
wat is P(O|data)
posterior beliefs, after seeing the data
wat is de predictive updating factor
how well did each value of theta predict the data, compared to all other values of theta?
bayesian learning cycle
prior knowledge -> prediction -> data -> prediction error -> knowledge update -> prior knowledge…
wanneer is deduction
bij prediction en data
wanneer is induction
bij prediction error and knowledge update