Bayes I Flashcards

1
Q

statistical model =

A

general statistical model + statement about the parameter value that describes a certain phenomenon

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

we can reflect a models’ statement via a …

A

probability distribution. based on what these models claim about theta, certain outcomes are more or less likely.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

models can also state a range of values

A

binominal distribution!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

waar is de beta distribution op gebaseerd

A

a = successes
b = failures

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

what if a and b equal 1?

A

distribution is uniform

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

what if the a and b are the same

A

mooie normaal verdeling -> values closer to 0,5 are more plausible.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

what if a is smaller than b

A

piek ligt links -> values below 0,5 are more plausible

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

what if a is larger than b

A

piek ligt rechts -> values above 0,5 are more plausible

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

dus waar ligt de piek van de binominal grafiek

A

aan de kant met het LAAGSTE getal

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

wat is P(O)

A

prior knowledge, things we think BEFORE seeing the data

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

wat is P(O|data)

A

posterior beliefs, after seeing the data

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

wat is de predictive updating factor

A

how well did each value of theta predict the data, compared to all other values of theta?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

bayesian learning cycle

A

prior knowledge -> prediction -> data -> prediction error -> knowledge update -> prior knowledge…

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

wanneer is deduction

A

bij prediction en data

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

wanneer is induction

A

bij prediction error and knowledge update

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

predictive updating factor bestaat uit 2 delen

A

likelihood given a certain value of theta

marginal likelihood, across all values of theta

17
Q

dus likelihood vertelt ons….

A

This tells us something about
how well a specific value of θ
predicted the data (i.e., it is the
quality of the prediction for this
specific value)

18
Q

dus marginal likelihood vertelt ons…

A

This tells us something how well
θ predicted the data, averaged
over all possible values of θ (i.e., it
is the average quality of the
prediction of the model)

19
Q

dus de predictive updating factor vertelt ons…

A

Taken together, this ratio tells us how well each
value of θ predicted the data, relative to all other
values!

je maakt een soort grafiek van alle values en hoe goed ze de data predicten.

20
Q

the likelihood is NOT

A

a probability distribution!!!!!!! -> suface area =/= 1

21
Q

marginal likelihood

A

how well did the model on average predict the data -> average quality of the prediction model.
the probability of generating the observed sample from a prior.
how well we can explain the data using all parameters?
which values of theta predicted better than average?

22
Q

likelihood

A

the likelihood of the data, given a certain value of theta

23
Q

wanneer krijg je een BF > 1 (goede predictie)

A

likelihood > marginal likelihood.

dan zijn er values van theta die de data beter predicten dan average.

24
Q

wanneer krijg je een BF < 1 (slechte predictie)

A

marginal likelihood > likelihood

dan is het average van de data dus een betere predictie dan jouw model.

25
Q

dus heel korte beschrijving marginal en likelihood

A

marginal likelihood: soort van average over alle data (soort van net als y-, vergelijkingspunt)

likelihood: the likelihood of the data, given a certain value of theta. dus dit is eigenlijk een soort van of deze value van thta de data beter kan voorspellen dan de average van het model

26
Q

posterior knowledge =

A

prior beliefs * predictive updating factor

27
Q

wat gebeurt er tijdens de predictive updating factor

A

values of theta that predict the data petter than average receive a boost (increase in plausability), values of theta that predict the data worse than average receive a penalty (decrease in plausability)

28
Q

what is the posterior distribution

A

a probability distribution!

29
Q

verschil likelihood en probability distribution

A

y assen zijn hetzelfde

x assen (horizontaal)
likelihood: fixes succcesses, variates theta
probability: fixes theta, variates successes (bijvoorbeeld aantal keer heads)

30
Q

wat vertelt de PUF ons

A

the ratio tells us how well each value of theta predicted the data, relative to all other values

31
Q

likelihood in relatie tot marginal likelihood

A

als de likelihood hoger is dan de marginal likelihood, heeft deze waarde van theta de data beter dan gemiddeld heeft voorspelt!

32
Q

wat is de PUF als de likelihood groter is dan marginal likelihood

A

> 1

33
Q

wat is de PUF als de marginal likelihood groter is dan de likelihood

A

<1 -> geen goede predictie van die value van theta.

34
Q

wat gebeurt er bij een very strong prior (hoge a en hoge b waardes)

A

A very strong prior that assigned more mass to certain values. The prior
conviction is so strong that the data cannot overthrow this conviction: the posterior is still situated at the prior stated values.

This highlights an important feature of learning: strong beliefs need a lot of data to be convinced otherwise! This also makes Sarah and Paul very poor learners: they are so convinced of their value that there is no updatin

35
Q

wat als de prior distribution een beta distribution is

A

dan is de posterior distribution dit ook!

met:
a = a + #successes (in our case, #tails)
b = b + #failures (in our case, #heads)

= continuous distribution

36
Q

wat kan je met de posterior distribution doen

A

een estimation maken!
take the point estimate, mean or median

you can also make a central credible interval

37
Q

hoe maak je een central credible interval

A

To obtain the x% central credible interval, we take
x% of the most central posterior mass, and see
which 2 points are the thresholds

dus bijvoorbeeld 95% central credible interval -> kijken welke 95% in het midden ligt, en hiervan benoem je dan de grens.

38
Q

hoe interpreteer je deze central credible interval

A

under this model, there is a x% probability that the true proportion is between … and ….

39
Q

predictive quality (wat bedoelen ze hiermee)

A

how well does each possible value of the parameter predict the observed data, compared to the other values