Agenter (Från intelligenta Agenter) Flashcards

1
Q

Vad är en intelligent agent?

A

Ett program som kan ta beslut eller utföra en handling baserat på sin miljö, user input och erfarenheter

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Hur uppfattar och agerar agenter i sin miljö?

A

Percieves its environment via sensors

Acts with its effectors

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Vad är en Simple Reflex Agent

A

En agent som följer för-definierade regler för att ta beslut. Den svarar endast på den nuvarande situation utan att tänka på tidigare eller framtida konsekvenser

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Vad är fördelar med en simple reflex agent

A
  1. Easy to desgin and implement
  2. Real time repsonses to environmental changes
  3. Highly reliable in situations where the sensors providing input are accurate and the rules are well designed
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Vad är begränsningar med Simple Reflex Agents?

A
  1. Den kommer misslyckas om input sensorer inte fungerar eller om reglerna är dåligt utformade
  2. Har inget minne eller state
  3. Begränsade till ett specifikt set av handlingar och kan inte anpassa sig till nya situationer
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Vad är goal-based agents?

A

Agenter som använder information från deras miljö för att uppnå specifika mål.
(Också kallade rule-based agents)

De använder sökalgoritmer för att hitta den mest effektiva vägen mot deras mål inom en miljö

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Hur arbetar en goal based agent?

A
  1. Perception: Using sensors to collect information about its surroundings
  2. Reasoning: The agent analyzes the information collected and decides on the best course of action to achieve its goal
  3. Action : The agent takes actions to achieve its goal, such as moveing or manipulating objects in the environment
  4. Evalution: After taking action, the agent evaluates its progress towards the goal and adjusts its action, if necessary
  5. Goal Completion: One the agent has achieved its goal, it either stops working or begins working on a new goal
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Vad är fördelar med goal-based agents?

A

Simple to implement and understand

Easy to evaluate performancebased on goal completion

Well-suited for well-definied strucutred environments

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Vad är disadvatanges for goal based agents?

A

Limited to a specific goal.

Unable to adapt to changing environments

Ineffective for complex tasks that have too many variables

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Vad är learning Agents?

A

En agent som kan lära sig från tidigare erfarenheter och förbättra sitt performance.

Anpassas automatiskt genom machine learning

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Vilka 4 huvudkomponenter består en learning agent av?

A

Learning element
Critic
Performance Element
Problem Generator

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Vad innebär learning element?

A

Responsible for learning and making improvements based on the experiences it gains from its environment.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Vad innebär critic component?

A

It provides feedback to the learning element by the agent’s performance for a predefined standard.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Performance Element

A

It selects and executes external actions based on the information from the learning element and the critic.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Problem Generator

A

It suggests actions to create new and informative experiences for the learning element to improve its performance.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Hur fungerar learning agents?

A

AI learning agents follow a cycle of observing, learning, and acting based on feedback. They interact with their environment, learn from
feedback, and modify their behavior for future interactions.

  • Observation: The learning agent observes its environment through sensors or other inputs.
  • Learning: The agent analyzes data using algorithms and statistical models, learning from feedback on its actions and performance.
  • Action: Based on what it has learned, the agent acts in its environment to decide how to behave.
  • Feedback: The agent receives feedback about their actions and performance through rewards, penalties, or environmental cues.
  • Adaptation: Using feedback, the agent changes its behavior and decision-making processes, updating its knowledge and adapting to its environment.
17
Q

Vad är fördelar med learning agents?

A

The agent can convert ideas into action based on AI decisions. Learning intelligent agents can follow basic commands, like spoken instructions, to perform tasks. Unlike classic agents that perform predefined actions, learning agents can evolve with time

18
Q

Vad är nackdelar med learning agents?

A

May cause biased or incorrect decision-making. High development and maintenance costs. Requires significant computing resources. Dependence on large amounts of data. Lack of human-like intuition and creativity

19
Q

Vilka är egenskaperna av en intelligent Agent?

A
  • Autonomous
  • Interacts with other agents plus the environment
  • Reactive to the environment
  • Pro-active (goal-directed)