9 Flashcards
X is an exponential random variable of parameter lambda when its probability distribution function is: f(x) = ?
{lambda e^-(lambda x), x >= 0
{0, x < 0
Expression for the cumulative function of exponential random variable of parameter lambda:
1 - e^-(lambda a)
P{X < a} in exponential random variable?
1 - e^-(lambda a)
P{X > a} in exponential random variable:
e^-(lambda a)
Expected value of X^n in exponential random variable: E[X^n] = ?
-int(0, oo)(x^n lambda e^-(lambda x) dx) = (n/lambda) E[X^(n-1)]
Expectation of exponential random variable: E[X] = ?
1/lambda
Variance in exponential random variable: Var[X] = ?
(2/lambda^2) - 1/lambda^2 = 1/lambda^2
If X1 and X2 are independent and exponential with parameters lambda1 and lambda 2, then X = min{X1, X2} is exponential with parameter?
lambda = lambda1 + lambda2. Since X1 and X2 are independent, P{X > a} = P{X1 > a}P{X2 > a} = e^-(lambda1 a) e^-(lambda2 a) = e^-(lambda a)
Memoryless property?
The time is independent on the probability of the next event.