5 Flashcards
Mean = ?
E[X]
Variance? (2•)
•E[X^2] or •E[(mu - X)^2]
Binomial formula (a + b)^n?
Sum(k=1 -> n)((n chose k) a^k b^(n - k))
If p = 1/2, then what is binomial variable?
(n chose k) 1/2^n
What does p mean in binomial variable?
The probability that we are looking for in the question.
Identity: i(n chose i) = ?
n(n-1 chose i-1)
E(X) of binomial random variable B(b,p) is?
Sum(i=0 -> n)(i(n chose i)p^i q^n-i)
Mean of binomial random variable?
np
If X represents the number of heads in n tosses (wth probability of p), then E(X_j) =?
p1 + (1-p)0
E[(Y + 1)^(k-1)] = ?
Sum(i=0 -> n-1)((n-1 chose i)p^i q^((n-1)-i)*(j+1)^(k-1))
Probability mass function for binomial random variable with parameters (n,p)?
(n chose k)p^k q^(n-k)
E[X^k] = ?
npE[(Y + 1)^(k-1)], Y is binomial random variable with parameters (n-1, p).
Var[X] with binomial random variable B(n, p)?
npq
e^x = ?
Lim(n->oo)(1 + x/n)^n
Poisson Distribution: (Lambda^k/k!)(1-p)^n-k ~ ?
(Lambda^k /k!) e^-lambda