8 Flashcards
X is a standard normal random variable if: f(x) = ?
(1/(2 pi)^1/2) e^(-x^2 / 2)
Expectation of a standard normal random variable: E[X] = ?
Int(-oo -> oo)(x f(x) dx) = 0
Every odd function integral from -oo to oo = ?
0
Variance of standard normal random variable: var[X] = ?
Int(f(x) x^2 dx) = int(-oo -> oo)((1/(2 pi)^1/2) e^(-x^2 /2) x^2 dx) = 1
Expression for general normal random variable: f_y (x) = ?
(1/((2 pi)^1/2 sigma) e^(-(x - mu)^2 / 2 sigma^2)
Expectation of normal random variable: E[X] = ?
Mu
Variance of normal random variable: var[X] = ?
Sigma^2
Cumulative distribution function of normal variable: F_x (a) = ?
Phi(a) = (1/(2 pi)^-1/2) int(-oo -> a)(e^-(x^2 / 2) dx)
What is special about a normal random variable?
They approximate the binomial distribution for a large n.
the cumulative density function of the standard density function is?
phi
Standard error: What happens if you divide the error by the size of the standard deviation?
Number of standard deviations from the mean
Error from the mean?
S_n - np
DeMoivre-Laplace Limit Theorem: the equation, standard error for Bernoulli trial: lim(n->oo)(P{a <= (S_n - np)/(npq)^1/2) <= b}) = ?
phi(b) - phi(a)