851 - 900 Flashcards

1
Q

numpy.random.shuffle()

A

This function only shuffles the array along the first axis of a multi-dimensional array.

arr = np.arange(10)
np.random.shuffle(arr)
👉 [1 7 5 2 9 4 3 6 0 8]
arr = np.arange(9).reshape((3, 3))
np.random.shuffle(arr)

arr
👉 array([[3, 4, 5],
          [6, 7, 8],
          [0, 1, 2]])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

numpy.transpose(a, axes=None)

A

Reverse or permute the axes of an array and returns the modified array.

x = np.array([[0, 1],
              [2, 3]])

print(np.transpose(x))
👉 [[0 2]
    [1 3]]
my_array = numpy.array([[1,2,3],
                        [4,5,6]])

print(numpy.transpose(my_array))
👉 [[1 4]
    [2 5]
    [3 6]]
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

numpy.append(arr, values, axis=None)

A

Append values to the end of an array.

np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
👉 array([1, 2, 3, ..., 7, 8, 9])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

numpy.inner(a, b, /)

A

Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays.

a = np.array([1,2,3])
b = np.array([0,1,0])

print(np.inner(a, b))
👉 2
A = numpy.array([0, 1])
B = numpy.array([3, 4])

print(numpy.inner(A, B))
👉 4
A = numpy.array([2, 1])
B = numpy.array([3, 4])

print(numpy.inner(A, B))
👉 10
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

numpy.outer(a, b, out=None)

A

Compute the outer product of two vectors.

A = numpy.array([2, 3])
B = numpy.array([3, 4])
print(numpy.outer(A, B))
👉 [[ 6  8]
    [ 9 12]]
A = numpy.array([0, 1])
B = numpy.array([3, 4])
print numpy.outer(A, B) 
👉 [[0 0]
    [3 4]]
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Array Broadcasting

A

describes how NumPy treats arrays with different shapes during arithmetic operations. Subject to certain constraints, the smaller array is “broadcast” across the larger array so that they have compatible shapes.

if Rows_1 == Rows_2 and Colums_1 == Colums_2:
	compatible

if (Rows_1 == 1 or Colums_1 == 1) and (Rows_2 == 1 or Colums_2 == 1):
	compatible

if (Rows_1 == 1 or Colums_1 == 1) and (Rows_1 == Rows_2 or Colums_1 == Colums_2)
	compatible

x.shape == (2, 3)

y.shape == (2, 3) --- compatible
y.shape == (2, 1) --- compatible
y.shape == (1, 3) --- compatible
y.shape == (3, )  --- compatible

y.shape == (3, 2) --- NOT_compatible
y.shape == (2,  ) --- NOT_compatible

x.shape == (1, 2, 3, 5, 1, 11, 1, 17)

y.shape ==          (1, 7, 1,  1, 17)  --- compatible
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

numpy.empty(shape, dtype=float, order=’C’, *, like=None)

🎯 shape — int or tuple of int — Shape of the empty array, e.g., (2, 3) or 2.
🎯 order — {‘C’, ‘F’}, optional, default: ‘C’ — Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

A

Return a new array of given shape and type, without initializing entries.

np.empty([2, 2])
👉 array([[ -9.74499359e+001,   6.69583040e-309],
          [  2.13182611e-314,   3.06959433e-309]])
np.empty([2, 2], dtype=int)
👉 array([[-1073741821, -1067949133],
          [  496041986,    19249760]])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

numpy.diag(v, k=0)

A

Extract a diagonal or construct a diagonal array.

x = array([[0, 1, 2],
           [3, 4, 5],
           [6, 7, 8]])

np.diag(x)
👉 array([0, 4, 8])

np.diag(x, k=1)
👉 array([1, 5])

np.diag(x, k=-1)
👉 array([3, 7])

np.diag(np.diag(x))
👉 array([[0, 0, 0],
          [0, 4, 0],
          [0, 0, 8]])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

numpy.zeros(shape, dtype=float, order=’C’, *, like=None)

A

Return a new array of given shape and type, filled with zeros.

np.zeros(5)
👉 array([ 0.,  0.,  0.,  0.,  0.])
np.zeros((5,), dtype=int)
👉 array([0, 0, 0, 0, 0])
np.zeros((2, 1))
👉 array([[ 0.],
          [ 0.]])
s = (2,2)
np.zeros(s)
👉 array([[ 0.,  0.],
          [ 0.,  0.]])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

numpy.genfromtxt()

A

Load data from a text file, with missing values handled as specified.

f = StringIO('''text,# of chars hello world,11 numpy,5''')

np.genfromtxt(f, dtype='S12,S12', delimiter=',')
👉 array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')], 
   dtype=[('f0', 'S12'), ('f1', 'S12')])

s = StringIO(u"1,1.3,abcde")
data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ('mystring','S5')], delimiter=",")

data
👉 array((1, 1.3, b'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

numpy.stack(arrays, axis=0, out=None)

A

Join a sequence of arrays along a new axis.

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

np.stack((a, b))
👉 array([[1, 2, 3],
          [4, 5, 6]])
np.stack((a, b), axis=-1)
👉 array([[1, 4],
          [2, 5],
          [3, 6]])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

numpy.squeeze(a, axis=None)

A

Remove axes of length.

x = np.array([[[0], [1], [2]]])

print(np.squeeze(x))
👉 [0 1 2]
x = np.array([[[0], [1], [2]]])

print(np.squeeze(x, axis=0))
👉 [[0]
    [1]
    [2]]
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

pyment

🎯 pip install pyment - install
🎯 pyment -h - get the available options
🎯 python setup.py test - run the unit-tests:

A

docstrings manager (creator/converter)

To run Pyment from the command line the easiest way is to provide a Python file or a folder:

✅ will generate a patch from file
pyment example.py

✅ will generate a patch from folder
pyment folder/to/python/progs

✅ will overwrite the file
pyment -w myfile.py
To run the unit-tests:

import os
from pyment import PyComment

filename = 'test.py'

c = PyComment(filename)
c.proceed()
c.diff_to_file(os.path.basename(filename) + ".patch")
for s in c.get_output_docs():
    print(s)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

min()

A

function returns the item with the lowest value, or the item with the lowest value in an iterable. If the values are strings, an alphabetically comparison is done.

x = min(5, 10)
print(x)
👉 5
# Найти минималное значение сравнив два значения
test = [1, 2, 4, 5, 6]

for i in test:
    print(min(3, i))

👉 1
👉 2
👉 3
👉 3
👉 3
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

math.Manhattan Distance

A

The distance between two points measured along axes at right angles. In a plane with p1 at (x1, y1) and p2 at (x2, y2), it is |x1 - x2| + |y1 - y2|. Lm distance.

Distance of { 1, 6 }, { 3, 5 }, { 2, 3 } from { -1, 5 }
👉 sum = (abs(1 - (-1)) + abs(6 - 5)) + (abs(3 - (-1)) + abs(5 - 5)) +
(abs(2 - (-1)) + abs(3 - 5)) = 3 + 4 + 5 = 12

Distance of { 3, 5 }, { 2, 3 } from { 1, 6 }
👉 sum = 12 + 3 + 4 = 19

Distance of { 2, 3 } from { 3, 5 }
👉 sum = 19 + 3 = 22.

def distancesum (x, y, n):
    sum = 0
		
    for i in range(n):
        for j in range(i+1,n):
            sum += (abs(x[i] - x[j]) + abs(y[i] - y[j]))
     
    return sum
 
x = [ -1, 1, 3, 2 ]
y = [ 5, 6, 5, 3 ]
n = len(x)
print(distancesum(x, y, n)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What is the difference between programming and scripting?

A

Programming is used to create complex software, and it is compiled. Scripting assists programming languages and it is interpreted.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

git.rmdir

A

удалить папку.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

print(*objects , sep=’’ , end=’\n’ , file=sys.stdout , flush=False)

💡*objects - объекты Python
💡 sep=’’ - строка, разделитель объектов. Значение по умолчанию None
💡 end=’\n’ - строка, которой заканчивается поток. Значение по умолчанию None
💡 file=sys.stdout - объект, реализующий метод wrtite(string). Значение по умолчанию None
💡 flush=False - если True поток будет сброшен в указанный файл file принудительно.
Значение по умолчанию False

A

выводит объекты в текстовый поток, отделяя их друг от друга sep и заканчивая поток end. sep, end, file и flush, если они заданы, должны быть переданы в качестве аргументов ключевых слов.

print('Hello')
👉 Hello
print('Hello', 'how are you?')
👉 Hello how are you?
print('Hello', 'how are you?', sep='---')
👉 Hello---how are you?
lst = ['Раз', 'Два', 'Три']
for n, line in enumerate(lst, 1):
....if len(lst) == n:
........print(line)
....else:
........print(line, end='=>')

👉 Раз=>Два=>Три
print(11, 12, 13, 14, sep=';')
👉 11;12;13;14
# использование символа новой строки `\n` в переменной 
line = 'перенос строки при печати\nс помощью символа новой строки'
print(line)
👉 перенос строки при печати
👉 с помощью символа новой строки
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

numpy.busday_count(begindates, enddates, weekmask=’1111100’, holidays=[], busdaycal=None, out=None)

A

Counts the number of valid days between begindates and enddates, not including the day of enddates. If enddates specifies a date value that is earlier than the corresponding begindates date value, the count will be negative.

# Number of weekdays in January 2011
np.busday_count('2011-01', '2011-02')
👉 21
# Number of weekdays in 2011
np.busday_count('2011', '2012')
👉 260
# Number of Saturdays in 2011
np.busday_count('2011', '2012', weekmask='Sat')
👉 53
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

os.path.commonprefix()

A

used to get longest common path prefix in a list of paths. This method returns only common prefix value in the specified list.

paths = ['/home/User/Desktop', '/home/User/Documents', '/home/User/Downloads']
prefix = os.path.commonprefix(paths)
print(prefix)

👉 /home/User/D
paths = ['/usr/local/bin', '/usr/bin']
prefix = os.path.commonprefix(paths)
print(prefix)

👉 /usr/
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

os.path.commonpath()

A

used to get the longest common sub-path in a list of paths. This method raise ValueError if the specified list of paths either contains both absolute and relative path, or is empty.

paths = ['/home/User/Desktop', '/home/User/Documents',  '/home/User/Downloads'] 
prefix = os.path.commonpath(paths)
print(prefix)

👉 /home/User
paths = ['/usr/local/bin', '/usr/bin']
prefix = os.path.commonpath(paths)
print(prefix)

👉 /usr
22
Q

numpy.random.default_rng(seed=None)

A

Construct a new Generator with the default BitGenerator (PCG64).

rng = np.random.default_rng(12345)
rfloat = rng.random()

print(rfloat)
👉 0.22733602246716966
rng = np.random.default_rng(12345)
rints = rng.integers(low=0, high=10, size=3)

print(rints)
👉 array([6, 2, 7])
If we exit and restart our Python interpreter, we’ll see that we generate the same random 
numbers again:

rng = np.random.default_rng(seed=42)
arr2 = rng.random((3, 3))

print(arr2)
👉 array([[0.77395605, 0.43887844, 0.85859792],
          [0.69736803, 0.09417735, 0.97562235],
          [0.7611397 , 0.78606431, 0.12811363]])
23
Q

Skewness

A

measurement of the distortion(искажение) of symmetrical distribution or asymmetry in a data set. Skewness is demonstrated on a bell curve when data points are not distributed symmetrically to the left and right sides of the median on a bell curve.

24
Q

git.nano

🎯 Ctrl+o - save the changes you’ve made to the file.
🎯 Ctrl+x - exit nano. If there are unsaved changes, you’ll be asked whether you want to save the changes.

A

open an existing file or to create a new file.

nano filename
25
Q

SQL.POW()

A

used to return a result after raising a specified exponent number to a specified base number. For example, if the base is **5 and the exponent is 2, this will return a result of 25.

SELECT POW(7, 2);
👉 49
SELECT POW(3, 3);
👉 27
SELECT POW(6, 0);
👉 1
SELECT POW(0, 4);
👉 0
26
Q

SQL.FORMAT()

A

used to format the specified value in the given format.

SELECT FORMAT(25, 'N')
SELECT FORMAT(1, 'P', 'en-US')AS [PERCENTAGE IN US FORMAT], 
    FORMAT(1, 'P', 'en-IN') AS [PERCENTAGE IN INDIA FORMAT];
DECLARE @d DATETIME = GETDATE();  
SELECT FORMAT( @d, 'dd/MM/yyyy', 'en-US' ) AS 'DateTime Result'
SELECT FORMAT(SYSDATETIME(), N'hh:mm tt');
SELECT 
    FORMAT(1, 'C', 'in-IN') AS 'INDIA', 
    FORMAT(1, 'C', 'ch-CH') AS 'CHINA', 
    FORMAT(1, 'C', 'sw-SW') AS 'SWITZERLAND', 
    FORMAT(1, 'C', 'us-US') AS 'USA';
27
Q

SQL.FLOOR()

A

returns the largest integer value that is smaller than or equal to a number.

SELECT FLOOR(25.75);
👉 25
SELECT FLOOR(25.44);
👉 25
SELECT FLOOR(-21.53);
👉 -22
28
Q

MySQL.GROUP_CONCAT()

A

used to concatenate data from multiple rows into one field.

SELECT emp_id, fname, lname, dept_id, 
GROUP_CONCAT ( strength ) as "strengths" 
FROM employee group by emp_id;
SELECT dept_id, 
GROUP_CONCAT ( DISTINCT emp_id ORDER BY emp_id  SEPARATOR', ') 
as "employees ids" 
from employee group by dept_id;
SELECT dept_id, GROUP_CONCAT ( strengths SEPARATOR '  ') as "emp-id : strengths"
FROM ( SELECT dept_id, CONCAT ( emp_id, ':', GROUP_CONCATt(strength SEPARATOR', ') )
as "strengths" FROM employee GROUP BY emp_id )as emp GROUP BY dept_id;
29
Q

MySQL.COALESCE()

A

returns the first non-null value in a list.

SELECT COALESCE(NULL, NULL, NULL, 'W3Schools.com', NULL, 'Example.com');
👉 W3Schools.com
SELECT COALESCE(NULL, 1, 2, 'W3Schools.com');
👉 1
SELECT COALESCE(1, 2, Null, 'W3Schools.com');
👉 1
30
Q

numpy.sum(a, axis=None, dtype=None, out=None, keepdims=<no>, initial=<no>, where=<no>)</no></no></no>

A

Sum of array elements over a given axis.

np.sum([0.5, 1.5])
👉 2.0
np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
👉 1
np.sum([[0, 1], [0, 5]])
👉 6
np.sum([[0, 1], [0, 5]], axis=0)
👉 array([0, 6])
np.sum([[0, 1], [0, 5]], axis=1)
👉 array([1, 5])
np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1)
👉 array([1., 5.])
31
Q

numpy.dot(a, b, out=None)

A

Произведение двух массивов.

np.dot(3, 4)
👉 12
a = [[1, 0], [0, 1]]
b = [[4, 1], [2, 2]]

np.dot(a, b)
👉 array([[4, 1],
          [2, 2]])
32
Q

numpy.random.randint(low, high=None, size=None, dtype=int)

🎯low — Lowest (signed) integers to be drawn from the distribution
🎯high — If provided, one above the largest (signed) integer to be drawn from the distribution
🎯size — Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

A

Return random integers from low (inclusive) to high (exclusive).

np.random.randint(2, size=10)
👉 array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
np.random.randint(1, size=10)
👉 array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
np.random.randint(5, size=(2, 4))
👉 array([[4, 0, 2, 1],
          [3, 2, 2, 0]])
np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
👉 array([[ 8,  6,  9,  7],
          [ 1, 16,  9, 12]], dtype=uint8)
33
Q

numpy.full(shape, fill_value, dtype=None, order=’C’, *, like=None)

A

Return a new array of given shape and type, filled with fill_value.

np.full((2, 2), np.inf)
array([[inf, inf],
       [inf, inf]])
np.full((2, 2), 10)
array([[10, 10],
       [10, 10]])
np.full((2, 2), [1, 2])
array([[1, 2],
       [1, 2]])
34
Q

numpy.reshape(a, newshape, order=’C’)

🎯a(array_like) — Array to be reshaped.
🎯newshape(int or tuple of ints) — The new shape should be compatible with the original shape.
🎯reshaped_array(ndarray) — This will be a new view object if possible; otherwise, it will
be a copy.

A

Gives a new shape to an array without changing its data.

np.reshape(a, (2, 3)) # C-like index ordering
array([[0, 1, 2],
       [3, 4, 5]])
np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
array([[0, 4, 3],
       [2, 1, 5]])
a = np.array([[1,2,3], [4,5,6]])
np.reshape(a, 6)
array([1, 2, 3, 4, 5, 6])
np.reshape(a, 6, order='F')
array([1, 4, 2, 5, 3, 6])
35
Q

numpy.arange([start, ]stop, [step, ]dtype=None, *, like=None)

A

Return evenly spaced values within a given interval.

np.arange(3)
👉 array([0, 1, 2])
np.arange(3.0)
👉 array([ 0.,  1.,  2.])
np.arange(3,7)
👉 array([3, 4, 5, 6])
np.arange(3,7,2)
👉 array([3, 5])
36
Q

numpy.identity(n, dtype=None, *, like=None)

A

Return square array with ones on the main diagonal.

np.identity(3)
array([[1.,  0.,  0.],
       [0.,  1.,  0.],
       [0.,  0.,  1.]])
37
Q

numpy.fromfunction(function, shape, *, dtype=<class ‘float’>, like=None, **kwargs)

A

Construct an array by executing a function over each coordinate. The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[ True, False, False],
       [False,  True, False],
       [False, False,  True]])
np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],
       [1, 2, 3],
       [2, 3, 4]])
38
Q

numpy.fromiter(iter, dtype, count=- 1, *, like=None)

A

Create a new 1-dimensional array from an iterable object.

iterable = (x*x for x in range(5))
np.fromiter(iterable, float)
👉 array([  0.,   1.,   4.,   9.,  16.])
39
Q

numpy.delete(arr, obj, axis=None)

A

Return a new array with sub-arrays along an axis deleted.

arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

np.delete(arr, 1, 0)
array([[ 1,  2,  3,  4],
       [ 9, 10, 11, 12]])
np.delete(arr, np.s_[::2], 1)
array([[ 2,  4],
       [ 6,  8],
       [10, 12]])

np.delete(arr, [1,3,5], None)
array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])
40
Q

numpy.imag(val)

A

Return the imaginary part of the complex argument.

a = np.array([1+2j, 3+4j, 5+6j])
a.imag
👉 array([2.,  4.,  6.])
np.imag(1 + 1j)
👉 1.0
41
Q

numpy.expand_dims(a, axis)

A

Expand the shape of an array. Insert a new axis that will appear at the axis position in the expanded array shape.

x = np.array([1, 2])

x.shape
👉 (2,)
y = np.expand_dims(x, axis=0)

y.shape
👉 (1, 2)
y = np.expand_dims(x, axis=1)

y.shape
👉 (2, 1)
42
Q

numpy.ravel(a, order=’C’)

A

Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

x = np.array([[1, 2, 3], [4, 5, 6]])

np.ravel(x)
array([1, 2, 3, 4, 5, 6])
43
Q

numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no>, *, where=<no>)</no></no>

A

Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis.

a = np.array([[1, 2], [3, 4]])
np.std(a)
👉 1.1180339887498949

np.std(a, axis=0)
👉 array([1.,  1.])

np.std(a, axis=1)
👉 array([0.5,  0.5])
a = np.zeros((2, 512*512), dtype=np.float32)
a[0, :] = 1.0
a[1, :] = 0.1

np.std(a)
👉 0.45000005
np.std(a, dtype=np.float64)
👉 0.44999999925494177
a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])

np.std(a)
👉 2.614064523559687

np.std(a, where=[[True], [True], [False]])
👉 2.0
44
Q

numpy.nbytes

A

Total bytes consumed by the elements of the array.

x = np.zeros((3,5,2), dtype=np.complex128)
x.nbytes
👉 480

np.prod(x.shape) * x.itemsize
👉 480
45
Q

numpy.concatenate((a1, a2, …), axis=0, out=None, dtype=None, casting=”same_kind”)

A

Join a sequence of arrays along an existing axis.

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])

np.concatenate((a, b), axis=0)
array([[1, 2],
       [3, 4],
       [5, 6]])
np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
       [3, 4, 6]])
np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])
46
Q

numpy.column_stack(tup)

A

Stack 1-D arrays as columns into a 2-D array. Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is, just like with hstack. 1-D arrays are turned into 2-D columns first.

a = np.array((1,2,3))
b = np.array((2,3,4))

np.column_stack((a,b))
array([[1, 2],
       [2, 3],
       [3, 4]])
47
Q

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no>, *, where=<no>)</no></no>

A

Compute the arithmetic mean along the specified axis. Returns the average of the array elements.

a = np.array([[1, 2], [3, 4]])
np.mean(a)
👉 2.5
np.mean(a, axis=0)
👉 array([2., 3.])
np.mean(a, axis=1)
👉 array([1.5, 3.5])
48
Q

numpy.any(a, axis=None, out=None, keepdims=<no>, *, where=<no>)</no></no>

A

Test whether any array element along a given axis evaluates to True. Returns single boolean unless axis is not None.

np.any([[True, False], [True, True]])
👉 True
np.any([[True, False], [False, False]], axis=0)
👉 array([ True, False])
np.any([-1, 0, 5])
👉 True
np.any([[True, False], [False, False]], where=[[False], [True]])
👉 False
49
Q

numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)

A

Find the unique elements of an array. Возращает array без дубликатов.

np.unique([1, 1, 2, 2, 3, 3])
👉 array([1, 2, 3])
a = np.array([[1, 1], [2, 3]])
np.unique(a)
👉 array([1, 2, 3])
a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
np.unique(a, axis=0)
👉 array([[1, 0, 0], [2, 3, 4]])
50
Q

numpy.hstack(tup) and numpy.vstack(tup)

A

Stack arrays in sequence horizontally (column wise). Соединить два arrays или больше.
Stack arrays in sequence vertically (row wise).

a = np.array((1,2,3))
b = np.array((4,5,6))
np.hstack((a,b))
array([1, 2, 3, 4, 5, 6])
a = np.array([[1],[2],[3]])
b = np.array([[4],[5],[6]])
np.hstack((a,b))
array([[1, 4],
       [2, 5],
       [3, 6]])
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
np.vstack((a,b))
array([[1, 2, 3],
       [4, 5, 6]])
a = np.array([[1], [2], [3]])
b = np.array([[4], [5], [6]])
np.vstack((a,b))
array([[1],
       [2],
       [3],
       [4],
       [5],
       [6]])