51 - 100 Flashcards

1
Q

numpy.flatten(order=’C’)

A

Return a copy of the array collapsed into one dimension.

a = np.array([[1,2], [3,4]])
a.flatten()
👉 array([1, 2, 3, 4])
a = np.array([[1,2], [3,4]])
a.flatten('F')
👉 array([1, 3, 2, 4])
my_array = numpy.array([[1,2,3], [4,5,6]])
print my_array.flatten()
👉 [1 2 3 4 5 6]
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

SQL.datetime

A

function to manipulate datetime values. The function accepts a time string and one or more modifiers.

SELECT datetime('now','-1 day','localtime'); 
SELECT datetime('now','localtime')
CREATE TABLE referrals(
    id INTEGER PRIMARY KEY,
    source TEXT NOT NULL,
    created_at TEXT DEFAULT CURRENT_TIMESTAMP
);
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

math.exp()

A

the method returns E raised to the power of x (Ex).

print(math.exp(65))
👉 1.6948892444103338e+28
print(math.exp(-6.89))
👉 0.0010179138409954387
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None)

A

Read SQL query or database table into a DataFrame.

from sqlite3 import connect
conn = connect(':memory:')
df = pd.DataFrame(data=[[0, '10/11/12'], [1, '12/11/10']], 
columns=['int_column', 'date_column'])
df.to_sql('test_data', conn)
pd.read_sql('SELECT int_column, date_column FROM test_data', conn)
   int_column date_column
0           0    10/11/12
1           1    12/11/10
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

pandas.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False, auth_local_webserver=False, dialect=None, location=None, configuration=None, credentials=None, use_bqstorage_api=None, max_results=None, progress_bar_type=None)

A

Load data from Google BigQuery. This function requires the pandas-gbq package.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

pandas.DataFrame.to_sql(name, con, schema=None, if_exists=’fail’, index=True, index_label=None, chunksize=None, dtype=None, method=None)

A

Write records stored in a DataFrame to a SQL database.

from sqlalchemy import create_engine
engine = create_engine('sqlite://', echo=False)
df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']})

df.to_sql('users', con=engine)
engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]
df2 = pd.DataFrame({'name' : ['User 6', 'User 7']})
df2.to_sql('users', con=engine, if_exists='append')
engine.execute("SELECT * FROM users").fetchall()
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None, dtype=None)

A

Read SQL query into a DataFrame. Returns a DataFrame corresponding to the result set of the query string.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

pandas.DataFrame.filter(items=None, like=None, regex=None, axis=None)

A

Subset the dataframe rows or columns according to the specified index labels. The filter is applied to the labels of the index.

df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), index=['mouse', 'rabbit'], columns=['one', 'two', 'three'])

df.filter(items=['one', 'three'])

               one  three
mouse     1      3
rabbit       4      6
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

pandas.DataFrame.join(other, on=None, how=’left’, lsuffix=’’, rsuffix=’’, sort=False)

A

Join columns with other DataFrame either on an index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list.

df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
                                'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})

other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], 'B': ['B0', 'B1', 'B2']})
df.join(other, lsuffix='_caller', rsuffix='_other')
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

pandas.DataFrame.unstack(level=- 1, fill_value=None)

A

Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.

index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ('two', 'a'), ('two', 'b')])
s = pd.Series(np.arange(1.0, 5.0), index=index)

s.unstack(level=-1)
         a      b
one  1.0  2.0
two   3.0  4.0
s.unstack(level=0)
   one  two
a  1.0   3.0
b  2.0   4.0
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

matplotlib.xlim() and matplotlib.ylim()

A

Get or set the x or y limits of the current axes.

left, right = xlim()  # return the current xlim
xlim((left, right))   # set the xlim to left, right
xlim(left, right)     # set the xlim to left, right
xlim(right=3)  # adjust the right leaving left unchanged
xlim(left=1)  # adjust the left leaving right unchanged
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

matplotlib.gca(**kwargs)

A

If there are currently no Axes on this Figure, a new one is created using Figure.add_subplot.

plt.close('all')
arr = np.arange(100).reshape((10, 10))
fig = plt.figure(figsize =(4, 4))
im = plt.imshow(arr, interpolation ="none", cmap ="plasma")

divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("left", "15 %", pad ="30 %")
plt.colorbar(im, cax = cax)

fig.suptitle('matplotlib.pyplot.gca() function\
Example\n\n', fontweight ="bold")
plt.show()
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

matplotlib.set_position()

A

function in the axes module of matplotlib library is used to set the axes position.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

matplotlib.suptitle(t, **kwargs)

A

Add a centered suptitle to the figure.

d = {'series a' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
      'series b' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)

title_string = "This is the title"
subtitle_string = "This is the subtitle"

plt. figure()
df. plot(kind='bar')
plt. suptitle(title_string, y=1.05, fontsize=18)
plt. title(subtitle_string, fontsize=10)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

matplotlib.gcf()

A

Get the current figure. If there is currently no figure on the pyplot figure stack, a new one is created using figure().

plot.plot([2, 3, 4])
figure = plot.gcf().canvas

ag = figure.switch_backends(FigureCanvasAgg)
ag.draw()
A = np.asarray(ag.buffer_rgba())

from PIL import Image
img = Image.fromarray(A)

img.show()
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

seaborn.set(*args, **kwargs)

A

Alias for set_theme(), which is the preferred interface. This function may be removed in the future.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

numpy.ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)

A

An array object represents a multidimensional, homogeneous array of fixed-size items.

np.ndarray(shape=(2,2), dtype=float, order='F')
👉 array([[0.0e+000, 0.0e+000],
       [     nan, 2.5e-323]])
np.ndarray((2,), buffer=np.array([1,2,3]),
           offset=np.int_().itemsize,
           dtype=int)
👉 array([2, 3])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

numpy.pi

A

numpy.pi

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

numpy.add(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj])

A

Add arguments element-wise.

np. add(1.0, 4.0)
👉 5. 0
x1 = np.arange(9.0).reshape((3, 3))
x2 = np.arange(3.0)

np.add(x1, x2)
👉 array([[  0.,   2.,   4.],
         [  3.,   5.,   7.],
         [  6.,   8.,  10.]])
x1 = np.arange(9.0).reshape((3, 3))
x2 = np.arange(3.0)

x1 + x2
👉 array([[ 0.,  2.,  4.],
           [ 3.,  5.,  7.],
           [ 6.,  8., 10.]])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

numpy.matmul(x1, x2, /, out=None, *, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj, axes, axis])

A

Matrix product of two arrays.

a = np.ones([9, 5, 7, 4])
c = np.ones([9, 5, 4, 3])
np.dot(a, c).shape
👉 (9, 5, 7, 9, 5, 3)

np.matmul(a, c).shape
👉 (9, 5, 7, 3)
a = np.array([[1, 0], [0, 1]])
b = np.array([[4, 1], [2, 2]])

np.matmul(a, b)
👉 array([[4, 1], [2, 2]])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

numpy.eye(N, M=None, k=0, dtype=, order=’C’, *, like=None)

A

Return a 2-D array with ones on the diagonal and zeros elsewhere.

np.eye(2, dtype=int)
👉 array([[1, 0],
          [0, 1]])
np.eye(3, k=1)
👉 array([[0.,  1.,  0.],
          [0.,  0.,  1.],
          [0.,  0.,  0.]])
22
Q

numpy.ones(shape, dtype=None, order=’C’, *, like=None)

A

Return a new array of given shapes and types, filled with ones.

np.ones(5)
👉 array([1., 1., 1., 1., 1.])
np.ones((5,), dtype=int)
👉 array([1, 1, 1, 1, 1])
np.ones((2, 1))
👉 array([[1.], [1.]])
s = (2,2)
np.ones(s)
👉 array([[1.,  1.],
          [1.,  1.]])
23
Q

numpy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)

A

Returns True if two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers.

np.allclose([1e10,1e-7], [1.00001e10,1e-8])
👉 False
np.allclose([1e10,1e-8], [1.00001e10,1e-9])
👉 True
np.allclose([1.0, np.nan], [1.0, np.nan])
👉 False
np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
👉 True
24
Q

numpy.linalg.inv(a)

A

Compute the (multiplicative) inverse of a matrix.

from numpy.linalg import inv
a = np.array([[1., 2.], [3., 4.]])
ainv = inv(a)
ainv = inv(np.matrix(a))

👉 matrix([[-2. ,  1. ],
        [ 1.5, -0.5]])
a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
inv(a)
👉 array([[[-2.  ,  1.  ],
         [ 1.5 , -0.5 ]],
        [[-1.25,  0.75],
         [ 0.75, -0.25]]])
25
Q

numpy.linalg.solve(a, b)

A

Solve a linear matrix equation or system of linear scalar equations. Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

a = np.array([[1, 2], [3, 5]])
b = np.array([1, 2])
x = np.linalg.solve(a, b)

x
👉 array([-1.,  1.])
26
Q

maths.Permutations

A

when the order does matter. Выбрать из выборки в которой все элементы разные [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] определённое количество элементов и подсчитать сколько комбинаций получится:

  • Permutation.Repetition is Allowed — выборка не уменьшается и можно вытянуть тот же элемент множество раз.
  • Permutation.No Repetition — выборка уменьшается каждый раз когда выбирается какой то элемент.
27
Q

maths.Combinations

A

when the order doesn’t matter.

28
Q

SQL.RANK()

A

ВЫБИРАЕМ КОЛОНКУ в которой есть определенное количество уникальных идификаторов (CustomerID)и выбираем на какие данные ориентироватся. Метод разобет уникальные данные на рейтингсоответствующий колонки с выбранными данными на которые ориентироватся.

  • PARTITION BY - clause divides the rows of the result set into partitions.
  • ORDER BY - clause specifies the orders of the rows in each a partition.
RANK() OVER (
	PARTITION BY [{,...}]
	ORDER BY  [ASC|DESC], [{,...}]
)
SELECT OrderID, CustomerID, OrderDate,
RANK() OVER (
    PARTITION BY CustomerID
    ORDER BY OrderDate
    ) OrderRank
29
Q

SQL.WITH

A

allows you to give a sub-query block a name (a process also called sub-query refactoring), which can be referenced in several places within the main SQL query.

WITH temporaryTable (averageValue) as
    (SELECT avg(Attr1)
    FROM Table)
    SELECT Attr1
    FROM Table, temporaryTable
    WHERE Table.Attr1 > temporaryTable.averageValue
WITH temporaryTable(averageValue) as
    (SELECT avg(Salary)
    from Employee)
        SELECT EmployeeID,Name, Salary 
        FROM Employee, temporaryTable 
        WHERE Employee.Salary > temporaryTable.averageValue
30
Q

pandas.DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ignore_index=False)

A

Return a random sample of items from the axis of the object. You can use random_state for reproducibility.

df = pd.DataFrame({'num_legs': [2, 4, 8, 0],
                   'num_wings': [2, 0, 0, 0],
                   'num_specimen_seen': [10, 2, 1, 8]},
                   index=['falcon', 'dog', 'spider', 'fish'])

df['num_legs'].sample(n=3, random_state=1)
A random 50% sample of the DataFrame with replacement:
df.sample(frac=0.5, replace=True, random_state=1)
31
Q

pandas.DataFrame.std(axis=None, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)

A

Return sample standard deviation over the requested axis. Normalized by N-1 by default. This can be changed using the ddof argument.

df = pd.DataFrame({'person_id': [0, 1, 2, 3],
                  'age': [21, 25, 62, 43],
                  'height': [1.61, 1.87, 1.49, 2.01]}
                 ).set_index('person_id')

df.std()
👉 age       18.786076
Alternatively, ddof=0 can be set to normalize by N instead of N-1:
df.std(ddof=0)
👉 age       16.269219
👉 height     0.205609
32
Q

pandas.DataFrame.skew(axis=NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)

A

Return unbiased skew (перекос) over the requested axis. Data can be “skewed”, meaning it tends to have a long tail on one side or the other.
Вернуть беспристрастный перекоc по запрошенной Оси.

df = pd.read_csv("nba.csv")
df.skew(axis = 0, skipna = True)
df = pd.read_csv("nba.csv")
df.skew(axis = 1, skipna = True)
33
Q

scipy.stats.norm

A

A normal continuous random variable. f(x) = (exp(-x**2 / 2)) / sqr(2p).

from scipy.stats import norm
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)

mean, var, skew, kurt = norm.stats(moments='mvsk')
x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), 100)
ax.plot(x, norm.pdf(x), 'r-', lw=5, alpha=0.6, label='norm pdf')

rv = norm()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

vals = norm.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))

r = norm.rvs(size=1000)
34
Q

scipy.stats.skew(a, axis=0, bias=True, nan_policy=’propagate’, *, keepdims=False)

A

Compute the sample skewness of a data set. For normally distributed data, the skewness should be about zero.

from scipy.stats import skew
skew([1, 2, 3, 4, 5])
👉 0.0
skew([2, 8, 0, 4, 1, 9, 9, 0])
👉 0.2650554122698573
35
Q

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

A

Minimization of a scalar function of one or more variables.

from scipy.optimize import minimize, rosen, rosen_der

x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
res.x
👉 array([ 1.,  1.,  1.,  1.,  1.])
36
Q

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

A

Minimization of a scalar function of one or more variables.

from scipy.optimize import minimize, rosen, rosen_der

x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
res.x
👉 array([ 1.,  1.,  1.,  1.,  1.])
37
Q

LINEAR RELATIONSHIP or Linear Regression

A

найти взаимосвязь между данными, что бы предугадать, как будут меняется и какие будут результаты при других вводных. Например: какова будет стоимость 5 комнатной квартиры если известны стоимость 1, 2, 3 и 4 комнатных квартир.

👨‍💻👨‍💻👨‍💻👨‍💻👨‍💻👨‍💻👨‍💻👨‍💻👨‍💻👨‍💻
1) Добавить данные в матрицу без тому чему они равны(стоимости например) np.array([[площадь,количество спалень, этаж], [пл., кол, спал]… ])
s_b_f = np.array([[620, 1, 1], [3280, 4, 2], [1900, 2, 2], [1320, 3, 3]])

2) Добавить к матрице с данными вектор состоящих из эдиничек (столько сколько квартир)
x0 = np.ones((4, 1)) X = np.hstack((x0, s_b_f))

3) Добавить вектор символизирующий то чему равны данные (стоимость например)
Y = np.array([[244], [671], [504], [510]])

4) Инвертировать матрицу с данными (Х(-1)) РАБОТАЕТ ТОЛЬКО С МАТРИЦАМИ ГДЕ ОДИНАКОВОЕ КОЛИЧИСТВО Rows AND Columns (4x4) (2x2)
inv_x = np.linalg.inv(X)

5) Найти theta θ (vector ofcoefficients/variables/unknownsto be found? θ=X−1Y:)
theta = np.matmul(inv_x, Y)

6) Находим стоимость (Y5) квартиры у которой есть вводные данные, но нет цены
X5 = np.array([1, 3000, 5, 1]) Y5 = np.dot(X5, theta)

38
Q

maths.Logistic Regression

A

estimates the probability of an event occurring, such as voting or didn’t vote, based on a given dataset of independent variables. Since the outcome is a probability, the dependent variable is bounded between 0 and 1.

Logit(pi) = 1/(1+ exp(-pi))
ln(pi/(1-pi)) = Beta_0 + Beta_1*X_1 + … + B_k*K_k
39
Q

sys.path.insert

A

добавляет путь к модулю например.
представляет собой список строк, который указывает путь поиска для модулей.

py_path = '/home/fascinator/code/nameFascinator/data-challenges/04-Decision-Science/olist/'

sys.path.insert(1, py_path)
from data import Olist

print(Olist().get_data()['sellers'].head())
40
Q

breakpoint()

A

👉 Обозначает точку останова и выполняет функцию отладчика кода.

  • s - step into
  • n - next = step over
  • c - continue to the next error
  • u - up stack trace
  • d - down
  • return - continue until current function return
  • l - provide more context
  • q - quit or exit
 x = 10
y = 'Hi'
z = 'Hello'
print(y)
breakpoint()
print(z)

Hi
> h:\code\созданные проги\project\for_testing\first.py(6)()
-> print(z)
(Pdb)
~~~

41
Q

os.path.join()

A

join one or more path components intelligently. This method concatenates various path components with exactly one directory separator (‘/’) following each non-empty part except the last path component.

path = 'C:\\Users\\Viktor'
print(os.listdir(os.path.join(path, "desktop")))
path = "/home"
print(os.path.join(path, "User/Desktop", "file.txt"))

👉 /home/User/Desktop/file.tx
42
Q

os.path.dirname(path)

A

возвращает имя каталога в пути path. Это первый элемент пары, возвращаемый путем передачи пути к функции os.path.split().

os.path.dirname('/home/User/Documents/file.txt')
os.path.dirname('file.txt')

os.path.dirname(path)

43
Q

os.path.split(path)

A

(‘/home/User/Desktop’, ‘’)

делит путь path на двойной кортеж (head, tail), где tail - это последний компонент имени пути, а head - это все остальное. Хвостовая часть никогда не будет содержать косую черту.

os.path.split('/home/User/Desktop/file.txt')
os.path.split('/home/User/Desktop/')
44
Q

pandas.DataFrame.query(expr, inplace=False, **kwargs)

A

Query the columns of a DataFrame with a boolean expression.

df[df.A > df.B]
   A  B  C C
4  5  2    6
df.query('B == `C C`')
   A   B  C C
0  1  10   10
df[df.B == df['C C']]
   A   B  C C
0  1  10   10
45
Q

pandas.Series.map(arg, na_action=None)

A

Map values of Series according to an input mapping or function. Used for substituting each value in a Series with another value, that may be derived from a function, a dict, or a Series.

df['Fee'] = df['Fee'].map(lambda x: x - (x*10/100))
def fun1(x):
    return x/100
df['Fee'] = df['Fee'].map(lambda x:fun1(x))
s = pd.Series(['cat', 'dog', np.nan, 'rabbit'])
s.map({'cat': 'kitten', 'dog': 'puppy'})

0   kitten
1    puppy
2      NaN
3      NaN
46
Q

pandas.DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=NoDefault.no_default, observed=False, dropna=True)

A

method allows you to group your data and execute functions on these groups.

data = {
  'co2': [95, 90, 99, 104, 105, 94, 99, 104],
  'model': ['Citigo', 'Fabia', 'Fiesta', 'Rapid', 'Focus', 'Mondeo', 'Octavia', 'B-Max'],
  'car': ['Skoda', 'Skoda', 'Ford', 'Skoda', 'Ford', 'Ford', 'Skoda', 'Ford']
}

df = pd.DataFrame(data)
print(df.groupby(["car"]).mean())

             co2
car         
Ford    100.5
Skoda   97.0
47
Q

os.path.abspath(path)

A

вернет нормализованную абсолютную версию пути.

import os.path
os.path.abspath('file.txt')

👉 '/home/docs-python/file.txt'
file_name = 'GFG.txt'
print(os.path.abspath(file_name))

👉 /home/geeks/Desktop/gfg/GFG.txt
48
Q

os.makedirs(name, mode=0o777, exist_ok=False)

A

рекурсивно создает все промежуточные каталоги, если они не существуют. Функция работает подобно os.mkdir(), но создает все каталоги промежуточного уровня, необходимые для хранения конечного каталога.

d = 'a/b/c/d/test_dir'
os.makedirs(d, 0o774)

os.getcwd()
49
Q

__file__

A

is a variable that contains the path to the module that is currently being imported. Python creates a __file__ variable for itself when it is about to import a module.

print(\_\_file\_\_)
50
Q

os.path.expanduser

A

the method in Python is used to expand an initial path component ~( tilde symbol) or ~user in the given path to the user’s home directory.

path = "~/file.txt"
full_path = os.path.expanduser(path)
print(full_path)

👉 /home/ihritik/file.txt
#On Windows % name % expansions are supported in addition to $name and${name}

path1 = R"% HOMEPATH %\Directory\file.txt"
path2 = R"C:\Users\$USERNAME\Directory\file.txt"
path3 = R"${TEMP}\file.txt"