351 - 400 Flashcards

1
Q

git pull

A

Download changes from remote repo to your local machine, the opposite of push. Команда pull автоматически сливает коммиты, не давая вам сначала просмотреть их.

git pull origin master
git pull origin benchmark_name
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

sklearn.mixture.GaussianMixture(n_components=1, *, covariance_type=’full’, tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1, init_params=’kmeans’, weights_init=None, means_init=None, precisions_init=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10)

A

Unsupervised Learning → Clustering — A probabilistic model for modeling normally distributed clusters within a dataset.

👉 use cases
�� Customer segmentation
�� Recommendation systems

👉 Advantages
1. Computes a probability for an observation belonging to a cluster
2. Can identify overlapping clusters
3. More accurate results compared to K-means

👉 Disadvantages
1. Requires complex tuning
2. Requires setting the number of expected mixture components or clusters

from sklearn.mixture import GaussianMixture

X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]])
gm = GaussianMixture(n_components=2, random_state=0).fit(X)

gm.means_
👉 array([[10.,  2.],[ 1.,  2.]])

gm.predict([[0, 0], [12, 3]])
👉 array([1, 0])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

apyori.apriori()

A

Unsupervised Learning → Association — Rule-based approach that identifies the most frequent itemset in a given dataset where prior knowledge of frequent itemset properties is used.

👉 use cases
1. Product placements
2. Recommendation engines
3. Promotion optimization

👉 Advantages
1. Results are intuitive and Interpretable
2. Exhaustive approach as it finds all rules based on confidence and support

👉 Disadvantages
1. Generates many uninteresting itemsets
2. Computationally and memory intensive.
3. Results in many overlapping item sets

from apyori import apriori

transactions = [['beer', 'nuts'], ['beer', 'cheese']]
results = list(apriori(transactions))
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

sklearn.cluster.AgglomerativeClustering(n_clusters=2, *, affinity=’euclidean’, memory=None, connectivity=None, compute_full_tree=’auto’, linkage=’ward’, distance_threshold=None, compute_distances=False)

A

Unsupervised Learning → Clustering → Hierarchical Clustering — A “bottom-up” approach where each data point is treated as its own cluster—and then the closest two clusters are merged together iteratively.

👉 use cases
�� Fraud detection
�� Document clustering based on similarity

👉 Advantages
1. There is no need to specify the number of clusters
2. The resulting dendrogram is informative

👉 Disadvantages
1. Doesn’t always result in the best clustering
2. Not suitable for large datasets due to high complexity

from sklearn.cluster import AgglomerativeClustering

X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]])
clustering = AgglomerativeClustering().fit(X)

clustering.labels_
👉 array([1, 1, 1, 0, 0, 0])
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

xgboost.XGBRegressor(base_score=0.5, booster=’gbtree’, colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, importance_type=’gain’, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective=’reg:linear’, random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1)

A

Supervised Learning → Tree-Based Models — Gradient Boosting algorithm that is efficient & flexible.

👉 use cases
�� Churn prediction
�� Claims processing in insurance

👉 Advantages
�� Provides accurate results
�� Captures nonlinear relationships

👉 Disadvantages
�� Hyperparameter tuning can be complex
�� It does not perform well on sparse datasets

xgbr = xgb.XGBRegressor(verbosity=0) 
xgbr.fit(xtrain, ytrain)

score = xgbr.score(xtrain, ytrain)  
print("Training score: ", score)

👉 Training score:  0.9738225090795732
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize=’deprecated’, copy_X=True, max_iter=None, tol=0.001, solver=’auto’, positive=False, random_state=None)

A

Supervised Learning → Linear Model — it penalizes features that have low predictive outcomes by shrinking their coefficients closer to zero.
Can be used for classification or regression.

👉 use cases
�� Predictive maintenance for automobiles
�� Sales revenue prediction

👉 Advantages
�� Less prone to overfitting
�� Best suited where data suffer from multicollinearity
�� Explainable & interpretable

👉 Disadvantages
�� All the predictors are kept in the final model
�� Doesn’t perform feature selection

from sklearn.linear_model import Ridge

n_samples, n_features = 10, 5
rng = np.random.RandomState(0)

y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)

clf = Ridge(alpha=1.0)
clf.fit(X, y)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

sklearn.linear_model.ElasticNet(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, normalize=’deprecated’, precompute=False, max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection=’cyclic’)

A

Линейная регрессия с комбинированными L1 и L2 приорами в качестве регулятора.

from sklearn.linear_model import ElasticNet

X, y = make_regression(n_features=2, random_state=0)
regr = ElasticNet(random_state=0)
regr.fit(X, y)

print(regr.coef_)
👉 [18.83816048 64.55968825]

print(regr.intercept_)
👉 1.451...

print(regr.predict([[0, 0]]))
👉 [1.451...]
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Unsupervised Learning

A

Associated with learning without supervision(надзор) or training. In unsupervised learning, the algorithms are trained with data which is neither labeled(отмечен) nor classified. In unsupervised learning, the agent needs to learn from patterns without corresponding output values.

👉 Clustering
✅ K-Means
✅ Hierarchical Clustering
✅ Gaussian Mixture Models

👉 Association
✅ Apriori algorithm

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

lightgbm.LGBMRegressor and lightgbm.LGBMClassifier(boosting_type=’gbdt’, num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100, subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0, min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=None, importance_type=’split’, **kwargs)

A

LightGBM regressor is part of Supervised Learning and Tree-Based Models. A gradient boosting framework that is designed to be more efficient than other implementations.

👉 use cases
�� Predicting flight time for the airline
�� Predicting cholesterol levels based on health data

✔ Advantages
�� Can handle large amounts of data
�� Computational efficiency & fast training speed
�� Low memory usage

✅ Disadvantages
�� Can overfit due to leaf-wise splitting and high sensitivity
�� Hyperparameter tuning can be complex

from lightgbm import LGBMClassifier

lgbm = LGBMClassifier(objective='multiclass', random_state=5)
lgbm.fit(X, y)
y_pred = lgbm.predict(X_test)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Supervised learning

A

Type of machine learning in which machine learn from known datasets (set of training examples), and then predict the output.

👉 Linear Regression
👉 Logistic Regression
👉 Ridge Regression
👉 Lasso Regression
👉 Decision Tree
👉 Random Forests
👉 Gradient Boosting Regression
👉 XGBoost
👉 LightGBM Regressor
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

matplotlib.boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=True, autorange=False, zorder=None, *, data=None)

A

Draw a box and whisker plot. ящик с усами. Боксплот сделан для того, чтобы показывать распределение, но график уникальный, потому что помимо распределения он показывает медиану, квартили, минимум, максимум и выбросы.

👉 Выбросы — это значения, очень сильно выделяющиеся из всей остальной массы ваших данных.

np.random.seed(10)
data = np.random.normal(100, 20, 200)
fig = plt.figure(figsize =(10, 7))

plt. boxplot(data)
plt. show()
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

matplotlib.grid(visible=None, which=’major’, axis=’both’, **kwargs)

A

Add grid lines to the plot.

Display only grid lines for the x-axis:
x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt. title("Sports Watch Data")
plt. xlabel("Average Pulse")
plt. ylabel("Calorie Burnage")

plt. plot(x, y)
plt. grid()
plt. show()
Display only grid lines for the y-axis:
x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt. title("Sports Watch Data")
plt. xlabel("Average Pulse")
plt. ylabel("Calorie Burnage")

plt. plot(x, y)
plt. grid(axis = 'x')
plt. show()
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

matplotlib.plot(*args, scalex=True, scaley=True, data=None, **kwargs)

A

Draw points (markers) in a diagram. By default, the plot() function draws a line from point to point.
👉 Parameter 1 is an array containing the points on the x-axis.
👉 Parameter 2 is an array containing the points on the y-axis.

xpoints = np.array([1, 8])
ypoints = np.array([3, 10])
plt.plot(xpoints, ypoints)
plt.show()

🌍🌍🌍🌍🌍🌍🌍🌍

Draw two points in the diagram, one at position (1, 3) and one in position (8, 10):
xpoints = np.array([1, 8])
ypoints = np.array([3, 10])
plt.plot(xpoints, ypoints, 'o')
plt.show()

🌍🌍🌍🌍🌍🌍🌍🌍

Plotting without x-points:
ypoints = np.array([3, 8, 1, 10, 5, 7])
plt. plot(ypoints)
plt. show()

🌍🌍🌍🌍🌍🌍🌍🌍

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

matplotlib.annotate(text, xy, *args, **kwargs)

A

Annotate the point xy with text text. Одним словом установит стрелочку с текстовым описанием на необходимую точку на графике.

fig, geeeks = plt.subplots()

t = np.arange(0.0, 5.0, 0.001)
s = np.cos(3 * np.pi * t)
line = geeeks.plot(t, s, lw = 2)

geeeks.annotate('Local Max', xy =(3.3, 1), xytext =(3, 1.8),  arrowprops = dict(facecolor ='green',shrink = 0.05),)

geeeks. set_ylim(-2, 2)
plt. show()
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Choosing the right estimator

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

matplotlib.bar and matplotlib.barh(x, height, width=0.8, bottom=None, *, align=’center’, data=None, **kwargs)

A

Make a bar plot. Вертикальные линии. Информация за определенный период. Bar - по горизонтали. Barh - по вертикали.

x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt. bar(x,y)
plt. show()

🌍🌍🌍🌍🌍🌍🌍

x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt. barh(x, y)
plt. show()

🌍🌍🌍🌍🌍🌍🌍

x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt. bar(x, y, color = "hotpink")
plt. show()

🌍🌍🌍🌍🌍🌍🌍

x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt. bar(x, y, width = 0.1)
plt. show()

🌍🌍🌍🌍🌍🌍🌍

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

sklearn.inspection.permutation_importance(estimator, X, y, *, scoring=None, n_repeats=5, n_jobs=None, random_state=None,
sample_weight=None, max_samples=1.0)

A

The algorithm evaluates the importance of each feature in predicting the target. If the score drops when a feature is shuffled, it is considered important.

from sklearn.inspection import permutation_importance
log_model = LogisticRegression().fit(X, y) # Fit model
permutation_score = permutation_importance(log_model, X, y, n_repeats=10)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Holdout Method

A

Split data into Training and Test Data (like 70% | 30%).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Euclidean distance

A

Defined as the distance between two points. In other words, the Euclidean distance between two points in the Euclidean space is defined as the length of the line segment between two points. d = √[ (x2 – x1)2 + (y2 – y1)2]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

F-Test

A

Will tell you if a group of variables is jointly significant.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

T-Test

A

It is a statistical concept and is used to check whether the mean difference between the two sets of observations is equal to zero. Короче этот тест скажет или одна переменная статистически важна.

22
Q

P-value

A

Helps determine how likely it is to get a particular result when the null hypothesis is assumed to be true.
If the p-value is very small (<0.05 is considered generally), then our sample is “strange,” and this means that our assumption that the null hypothesis is correct is most likely to be false.

23
Q

R-squared

A

Statistical measure that represents the goodness of fit of a regression model. The closer the value of r-square to 1, the better is the model fitted.

24
Q

Heteroscedasticity

A

Data points are not equally scattered.

25
Q

tf.keras.layers.Masking(mask_value=0.0, **kwargs)

A

Masks a sequence by using a mask value to skip timesteps.

from tensorflow.keras.layers import Masking

samples, timesteps, features = 32, 10, 8
inputs = np.random.random([samples, timesteps, features]).astype(np.float32)
inputs[:, 3, :] = 0.
inputs[:, 5, :] = 0.

model = tf.keras.models.Sequential()

model. add(tf.keras.layers.Masking(mask_value=0., input_shape=(timesteps, features)))
model. add(tf.keras.layers.LSTM(32))

output = model(inputs)
26
Q

tf.keras.layers.Embedding(input_dim, output_dim, embeddings_initializer=’uniform’, embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None, **kwargs)

A

Преобразует положительные целые числа (индексы) в плотные векторы фиксированного размера.

model = tf.keras.Sequential()
model.add(tf.keras.layers.Embedding(1000, 64, input_length=10))
27
Q

gensim.models.Word2Vec(sentences, size=100, window=5, min_count=5, workers=4)

A

Сгенерируйте векторы слов, используя иерархические методы softmax или отрицательной выборки.

from gensim.models import Word2Vec
model = Word2Vec(sentences, min_count=1)

summarize vocabulary
words = list(model.wv.vocab)

access vector for one word
print(model['sentence'])

model.save('model.bin')
new_model = Word2Vec.load('model.bin')
28
Q

tf.keras.preprocessing.text.text_to_word_sequence(input_text, filters=’!”#$%&()*+,-./:;<=>?@[\]^_`{|}~\t\n’, lower=True, split=’ ‘)

A

This function transforms a string of text into a list of words while ignoring filters that include punctuations by default.

sample_text = 'This is a sample sentence.'
tf.keras.preprocessing.text.text_to_word_sequence(sample_text)
👉 ['this', 'is', 'a', 'sample', 'sentence']
29
Q

numpy.argmax(a, axis=None, out=None, *, keepdims=)

A

Returns the index of the maximum values along an axis.

a = np.array([[11, 12, 13, 14, 15], [21, 22, 23, 24, 25]])
print(np.argmax(a)) 
👉 9
a = np.array([[11, 12, 13, 14, 55], [21, 22, 23, 24, 25]])
print(np.argmax(a)) 
👉 4
a = np.array([[11, 12, 13, 14, 55], [21, 22, 23, 24, 25]])
print(np.argmax(a, axis=0))
👉 [1 1 1 1 0]
30
Q

numpy.absolute(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj])

A

Calculate the absolute value element-wise. Убрать минусы.

x = np.array([-2, 13, -22, 33, -55])
print(np.absolute(x))

👉 [ 2 13 22 33 55]
31
Q

tf.keras.utils.get_file(fname=None, origin=None, untar=False, md5_hash=None, file_hash=None, cache_subdir=’datasets’, hash_algorithm=’auto’, extract=False, archive_format=’auto’, cache_dir=None)

A

Downloads a file from a URL if it is not already in the cache.

32
Q

pandas.Series.between(left, right, inclusive=’both’)

A

This function returns a boolean vector containing True wherever the corresponding Series element is between the boundary values left and right.

s = pd.Series([2, 0, 4, 8, np.nan])
s.between(1, 4)
0    True
1    False
2    True
3    False
4    False
dtype: bool
s.between(1, 4, inclusive="neither")
0     True
1    False
2    False
3    False
4    False
dtype: bool
33
Q

pandas.to_numeric(arg, errors=’raise’, downcast=None)

A

Convert argument to a numeric type. Use the downcast parameter to obtain other types.

s = pd.Series(['1.0', '2', -3])
pd.to_numeric(s)
0    1.0
1    2.0
2   -3.0
dtype: float64
s = pd.Series(['1.0', '2', -3])
pd.to_numeric(s, downcast='float')
0    1.0
1    2.0
2   -3.0
dtype: float32
34
Q

pandas.DataFrame.memoryusage(index=True, deep=False)

A

Return the memory usage of each column in bytes.

dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
data = dict([(t, np.ones(shape=5000, dtype=int).astype(t)) for t in dtypes])
df = pd.DataFrame(data)

df.memory_usage()
Index              128
int64              40000
float64           40000
complex128   80000
object             40000
bool                5000
dtype:  int64
35
Q

tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer=’zeros’, gamma_initializer=’ones’, moving_mean_initializer=’zeros’, moving_variance_initializer=’ones’, beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs)

A

Слой, который нормализует свои входы. Пакетная нормализация применяет преобразование, которое поддерживает среднее значение выхода близким к 0 и стандартное отклонение выхода близким к 1.

36
Q

scipy.stats.pearsonr(x, y, *, alternative=’two-sided’)

A

Вычисляет коэффициент корреляции Пирсона и значение p для проверки отсутствия корреляции.

from scipy import stats
res = stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])

👉 PearsonRResult(statistic=-0.7426106572325056, pvalue=0.15055580885344558)
37
Q

Alternate Hypothesis

A

Предполагает, что есть взаимосвязь между двумя variable.

38
Q

Null Hypothesis

A

Suggests that there is no relationship between the two variables.

39
Q

numpy.linalg.det()

A

Compute the determinant of an array. Determinant - характеризует ориентированное «растяжение» или «сжатие» многомерного евклидова пространства после преобразования матрицей.

a = np.array([[1, 2], [3, 4]])
np.linalg.det(a)
👉 -2.0
a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])

a.shape
👉 (3, 2, 2)

np.linalg.det(a)
👉 array([-2., -3., -8.])
40
Q

file.readlines([sizehint])

🎯 file - объект файла
🎯 sizehint - int, количество байтов

A

method returns a list containing each line in the file as a listitem. Use the hint parameter to limit the number of lines returned.

f = open("demofile.txt", "r")
print(f.readlines())

👉 ['Hello! Welcome to demofile.txt\n', 'This file is for testing purposes.\n', 'Good Luck!']
41
Q

MLOps

A

empowers data scientists and app developers to help bring ML models to production. MLOps enables you to track / version / audit / certify / re-use every asset in your ML lifecycle and provides orchestration services to streamline managing this lifecycle.

42
Q

pyautogui.click(x=moveToX, y=moveToY, clicks=num_of_clicks, interval=secs_between_clicks, button=’left’)

A

just clicks the mouse once with the left button at the mouse’s current location. The button keyword argument can be ‘left’, ‘middle’, or ‘right’.

pyautogui.rightClick(x=moveToX, y=moveToY)
pyautogui.middleClick(x=moveToX, y=moveToY)
pyautogui.doubleClick(x=moveToX, y=moveToY)
pyautogui.tripleClick(x=moveToX, y=moveToY)
pyautogui.click()
👉 Click the mouse
```. 

pyautogui.click(100, 200)
👉 Move the mouse to XY coordinates and click it.
~~~

pyautogui.click('button.png')
👉 Find where button.png appears on the screen and click it.
43
Q

pyinstaller

A

convert py to exe programm.

pyinstaller --windowed --name "Name in window" --icon=iconka_progi.ico --onefile name_of_file.py
pyinstaller --windowed --icon=smiley-fat.ico app.py
pyinstaller app.py  - create exe file with all settings files

pyinstaller app.spec - if run can rebuild executable

.spec  - file contains the build configuration and instructions that PyInstaller uses to package up your application. 
44
Q

pywinauto

A

automate the Microsoft Windows GUI. Allows you to send mouse and keyboard actions to windows dialogs and controls, getting text data and open applications, open explorer with needed path.

from pywinauto import Desktop, Application

app = Application().start("notepad.exe")
app.UntitledNotepad.menu_select("Справка->О программе")
app.AboutNotepad.OK.click()
app.UntitledNotepad.Edit.type_keys("pywinauto Works!", with_spaces=True)
Application().start('explorer.exe "C:\\Program Files"')
app = Application(backend="uia").connect(path="explorer.exe", title="Program Files")

app.ProgramFiles.set_focus()
common_files = app.ProgramFiles.ItemsView.get_item('Common Files')
common_files.right_click_input()
app.ContextMenu.Properties.invoke()
45
Q

Tableau

A

visuals and dashboards. Для интерактивной визуализации данных и бизнес-аналитики.

46
Q

requests.get()

A

method sends a GET request to the specified url.

👉 url →→→ Required. The url of the request

👉 params →→→ Optional. A dictionary, list of tuples or bytes to send as a query string. Default None

👉 allow_redirects →→→ Optional. A Boolean to enable/disable redirection. Default True.

👉 auth →→→ Optional. A tuple to enable a certain HTTP authentication. Default None.

👉 cert →→→ Optional. A String or Tuple specifying a cert file or key. Default None.

👉 cookies →→→ Optional. A dictionary of cookies to send to the specified url. Default None.

👉 headers →→→ Optional. A dictionary of HTTP headers to send to the specified url. Default None

👉 proxies →→→ Optional. A dictionary of the protocol to the proxy url. Default None.

👉 stream →→→ Optional. A Boolean indication if the response should be immediatel downloaded (False) or streamed (True). Default False

👉 timeout →→→ Optional. A number, or a tuple, indicating how many seconds to wait for the client to make a connection and/or send a response. Default None which means the request will continue until the connection is closed

👉 verify →→→ Optional. A Boolean or a String indication to verify the servers TLS certificate or not. Default True

x = requests.get('https://w3schools.com')
print(x.status_code)

C:\Users\My Name>python demo_module_requests.py
200
>>> import requests
# ключ словаря 'key2' имеет список значений
>>> params = {'key1': 'value1', 'key2': ['value2', 'value3']}
# создаем GET запрос 
>>> resp = requests.get('https://httpbin.org/get', params=params)
# смотрим полученный URL
>>> print(resp.url)
# https://httpbin.org/get?key1=value1&key2=value2&key2=value3
47
Q

Microsoft Azure

A

облачная платформа компании Microsoft. Предоставляет возможность разработки, выполнения приложений и хранения данных на серверах, расположенных в распределённых дата-центрах.

48
Q

Spark

A

используется для обработки данных, например фильтрации, сортировки, очистки, валидации и так далее.

49
Q

RDD (Resilient Distributed Dataset)

A

это простая, неизменяемая, распределенная коллекция объектов во фреймворке Apache Spark. RDD представляет собой распределенный набор данных, который делится на множество частей, обрабатывающихся различными узлами в кластере.

50
Q

requests-html.get()

A

method sends a GET request to the specified url.

from requests_html import HTMLSession
session = HTMLSession()
r = session.get('https://python.org/')
from requests_html import AsyncHTMLSession
asession = AsyncHTMLSession()
r = await asession.get('https://python.org/')