2 Quantile Flashcards
1
Q
(S) QF-(p) / QF+(p)
A
- QF-(p) := min{t ∈ R | F(t) ≥ p} is the smallest p–quantile.
- QF+(p) := max{t ∈ R | F(t-) ≤ p} is the largest p–quantile.
2
Q
(D) Quantilfunktion
A
F CDF. Define QF-, QF+ : (0, 1) -> R by
QF-(p) = min{t ∈ R | F(t) ≥ p} , QF+(p) = max{t ∈ R | F(t-) ≤ p}.
QF- is called the quantile function of F.
3
Q
(B) Properties of quantile function
A
Obviously QF- ≤ QF+, and QF-,QF+ monotonic. Reflection principle suggests:
- QF- left continuous, QF+ right continuous
- F continuous <==> QF-,QF+ strictly monotonic
- F strictly monotonic <==>. QF-,QF+ continuous
4
Q
(L) Inversion lemma (2)
A
F CDF, p ∈ (0, 1), t ∈ R.
- We have
F(t) ≥ p <==> t ≥ QF-(p), F(t-) ≤ p <==> t ≤ QF+(p). - If F is piecewise constant, then we have additionally
F(t) > p <==> t ≥ QF+(p), F(t-) < p <==> t ≤ QF-(p).
5
Q
(D) Boxplot (3)
A
- fette Linie in der Box: Median
- oberes/unteres Ende der Box: erstes/drittes Quartil
- oberste/unterste Linie: Maximum/Minimum
6
Q
(D) p-quantile, quartiles, median
A
F CDF, p\in (0,1). A real number xp is called p-quantile of F if
F(xp-) ≤ p ≤ F(xp),
where F(t-) = lim_s>t(nachoben) F(s) the left limit. x0.25, x0.5, x0.75 are called quartiles, x0.5 median of F.