topic 6 Flashcards
why do we need age structure models
geometric, exponential, and logistic models assume no (or stable) age structure Many pops are structured (age specific vital rates) and do not have stable age class distributions Structural models needed to make pop, projections
age structure pop growth models - life cycle diagram
• Life cycle diagram - break down into age classes
§ Age specific survival: Px or Pi
Age specific birth rates (fertility or fecundity) Fx or Fi
notation used in age life cycle vs life table
Different notation than that used in life tables
Age = x or i
Px=gx
Age-specific per capita survival rate (probability that an
individual of age x will survive to age X+1
Fx=bx)
Age-specific per capita birth rate (# offspring born per
individual of age x)
practice predicting N in future
ok
leslie matrices
Leslie matrices • Top row: age-specific fertility (Fx) • Sub-diagonal: age-specific survival (PX) • All other values = 0 Always square, e.g., 4 age classes = 4x4 5 age classes = 5x5 Number of rows and columns always based on age class numbers
what info is contained in leslie matrix
age specific fertility + age specific survival F1 F2 F3 G4 P1 0 0 0 0 P2 0 0 0 0 P3 0
leslie matrix - pop vector
Initial population vector
— Initial age structure in I-dimensional
column matrix (vector)
— E.g., # individuals in age class 1, 2, 3, & 4
in first time period (t)
multiply to find resultant fecotr
time specific growth rate ( λt)
λt = Nt+1/Nt
subscript t = specific time period
Growth rate for time specific - ONLY for that time period
asymptotic (geometric growth rate)
read thru lab
growth rate once pop has reached stable age distribution - will eventually occur if vital rates are constant
stage structure - complication
• Vital rates might depend more on size or developmental stage (than age)
• Can adapt methods to handle stage - structured pops
Added complication: some individuals will remain in the same stage even after time has elapsed
stage structure life cycle variables
PX = probability that an individual will survive & remain in same stage after
one time interval
Gx = probability that an individual will survive & move into next stage after
one time interval
Fx = fertility (same as age-based model)
lefkovitch stage class pop matrix variables
PX = probability that an individual will survive & remain in the same stage in the next
time unit
Gx = probability Of surviving & moving on into the next stage after 1 time interal
Fx = age-specific fertility
look at the matrix
ok