Systems Drugs Flashcards
Mech of cyclosporine
Binds Cyclophilin –> Complex inhibits calcineurin –> prevents IL-2 transcription
Uses of cyclosporine
Transplant rejection prophylaxis
Psoriasis
Rheumatoid arthritis
Cyclosporine toxicity
Nephrotoxicity HTN, Hyperlipidemia Neurotoxicity Gingival hyperplasia Hirsutism
Mech of Tacrolimus
Binds FK506BP –> complex inhibits calcineurin –> Prevents IL-2 transcription
uses of Tacrolimus
Transplant rejection prophylaxis.
Tacrolimus toxicity
Similar to cyclosporine
Increased risk of diabetes and neurotoxicity
No gingival hyperplasia or hirsutism.
Sirolimus mechanism
Binds FKBP-12 –> complex inhibits mTOR –> prevents T-cell response to IL-2
Sirolimus uses
Kidney transplant rejection prophylaxis.
Sirolimus toxicity
Anemia thrombocytopenia leukopenia insulin resistance hyperlipidemia
non-nephrotoxic.
Daclizumab / Basiliximab mechanism
Monoclonal antibody; blocks IL-2R.
Daclizumab / Basiliximab uses
Kidney transplant rejection prophylaxis.
Daclizumab / Basiliximab toxicity
Edema, hypertension, tremor.
Azothioprine mechanism
Antimetabolite precursor of 6-mercaptopurine.
Inhibits lymphocyte proliferation by blocking nucleotide synthesis.
Azothioprine uses
Transplant rejection prophylaxis rheumatoid arthritis Crohn disease glomerulonephritis other autoimmune conditions.
Azothioprine toxicity
Leukopenia, anemia, thrombocytopenia.
Degraded by Xanthine Oxidase - don’t give with allopurinol
Mycophenolate mechanism
Inhibits IMP dehydrogenase - decreased synthesis of guanine
Inhibits rapid proliferation of B and T cells
Mycophenolate toxicity
Hyperglycemia
hyperlipidemia
Increased risk of lymphoma and infections
Thalidomide mechanims
Suppresses TNF alpha production
Increases NK cells and IL-2
Thalidomide uses
Erythema nodosum leprosum (Hansen Disease)
Multiple myeloma
Thalidomide toxicity
Terratogen
Aldesleukin (IL-2) use
Renal cell carcinoma
Metastatic melanoma
Epoetin alfa (erythropoietin) use
Anemias (especially in renal failure)
Thrombopoietin
Thrombocytopenia
Oprelvekin (interleukin-11)
Thrombocytopenia
Filgrastim (G-CSF)
Recovery of bone marrow
Sargramostim (GM-CSF)
Recovery of bone marrow
INF-Alpha use
Chronic Hep B and C
Kaposi Sarcoma
Malignant melanoma
Hairy cell leukemia
IFN beta use
Multiple sclerosis
IFN gamma use
Chronic granulomatous disease
Romiplostim, eltrombopag use
Thrombocytopenia
Alemtuzumab target and use
CD52 –> CLL
Bevacizumab target and use
VEGF –> Colorectal cancer, renal carcinoma
Cetuximab target and use
EGFR –> Stage 4 colorectal cancer / head and neck cancer
Rituximab target and use
CD 20
B-cell non-hodgkin lymphoma
CLL
Rheumatoid arthritis
Immune thrombocytopenic purpura
Trastuzumab target and use
HER2/neu –> Breast cancer
Adalimumab / infliximab target and use
Soluble TNF alpha receptor
IBD
rheumatoid arthritis
ankylosing spondylitis
psoriasis
Eculizumab target and use
complement protein C5
Paroxysmal nocturnal hemoglobinuria
Natalizumab target and use
alpha4-integrin
Multiple sclerosis
Crohn disease
Abciximab target and use
platelet glycoproteins IIb/IIIa
prevention of ischemic complications in patients undergoing PCI
Denosumab target and use
RANKL
Osteoporosis
Inhibits osteoclast maturation
Digoxin immune Fab target and use
Antidote for digoxin toxicitiy
Omalizumab target and use
IgE
allergic asthma; prevents IgE binding to FceR1
Palivizumab target and use
RSV F-protein
RSV prophylaxis for high risk infants
Ranibizumab, bevacizumab target and use
VEGF
Neovascular age-related macular degernation
HMG-CoA reductase inhibitor mechanism
Inhibits HMG-CoA –> mevalonate
Decreases mortality in CAD patients
HMG-CoA reductase uses
Lower LDL a lot
Increased HDL
HMG-CoA reductase toxicities
Hepatotoxicity (Increased LFT)
Myopathy (esp when used with fibrates or niacin)
Cholestyramine, Colestipol, Colesevelam mechanism
Prevents intestinal reabsorption of bile acids
Cholestyramine, Colestipol, Colesevelam use
Lower LDL
Cholestyramine, Colestipol, Colesevelam tox
GI upset
Decreased absorption of other drugs and ADEK
Ezetimibe mechanism
Decreases cholesterol absorption at brush border
Ezetimibe uses
Lower LDL
Ezetimibe tox
Diarrhea
Rare LFT rise
Gemfibrozil, Clofibrate, Bezafibrate, Fenofibrate mechanism
Upregulates LPL to increase TG clearance
Activated PPAR alpha to induce HDL synth
Gemfibrozil, Clofibrate, Bezafibrate, Fenofibrate uses
Lower TAGs
Gemfibrozil, Clofibrate, Bezafibrate, Fenofibrate toxicity
myopathy (increased with statin use)
cholesterol gallstones
Niacin mechanism
Inhibits lipolysis
reduces VLDL synthesis
Niacin uses
lower LDL
Higher HDL
Niacin toxicity
Red, flushing of face (prevent with NSAID)
Hyperglycemia
Hyperuricemia
Opioid (Morphine, fentanyl, loperamide, methadone, meperidine, dextromethorphan, diphenoxylate, pentazocine) mechanism
Agonist at mu receptor - opens K+ channel, closes Ca2+ channel
Inhibits release of Ach, NE, 5-HT, glutamate, substance P
Dextromethorphan use
cough suppression
Loperamide, diphenoxylate use
Diarrhea
Maintenance for heroin addiction
Methadone
Buprenorphine + naloxone
Toxicity of opioids
Addiction Respiratory depression miosis (cannot build tolerance) constipation (cannot build tolerance) CNS depression
Pentazocine mechanism
(Opioid) partial agonist at mu receptor + weak antagonist at mu receptor
Opioid designed to minimize addictive capacity
Can precipitate withdrawl symptoms in addicts
Halothane, isoflurane, sevoflurane, N2O mechanism
unknown
Halothane, isoflurane, sevoflurane, N2O effects
Myocardial depression
Resp depression
Nausea/emesis
Increased cerebral blood flow (decreased metabolic demand)
Halothane, enflurane, isoflurane, sevoflurane, methoxyflurane, N2O toxicity
Hepatotoxicity (Halothane)
nephrotoxicity (methoxyflurane)
Pro-convulsant (Enflurane)
Expansion of trapped gas in body cavity (N2O)
Malignant hyperthermia (all but N2O)
Barbiturates mechanism
Increases duration of Cl- channel opening in GABA neurons
Barbiturate uses
Induction of anesthesia and short surgical procedures
Sedative for anxiety
seizures
insomnia
How is barbiturate effect terminated?
Rapid redistribution into tissue (skel muscle and fat)
Benzodiazapine mechanism
Increases the frequency of Cl- channel opening in GABA neurons
Short acting benzos
Diazepam
Lorazepam
Alprozolam
Midazolam
Long acting benzos
Timazepan
Chlordiazepoxide (alcohol withdrawl)
Benzodiazapine toxicity
severe post op resp depression Decreased BP (treat with flumazenil) anterograde amnesia Dependence CNS depression
Ketamine mechanism
PCP analog –> Blocks NMDA receptors
Ketamine toxicity
Disorientation
hallucination
bad dreams
Increased cerebral blood flow
Propofol mechanism
Potentiates GABA
Propofol use
IV induction agent
sedation in ICU
rapid anesthesia induction
Short procedures
How are the effects of propofol terminated?
Rapid redistribution to the rest of the body (15 min)
metabolized by liver
Tramadol use
non-addictive analgesic
Chronic pain
Barbiturate toxicity
Resp and cardio depression (fatal)
CNS depression
dependence
CYP450 inducer
Benzodiazapine use
Anxiety spasticity status epilepticus (lorazepam diazepam) Delirium tremens (EtOH withdrawl) night terrors / sleep walking general anesthetic
Zolpidem, Zaleplon, Eszopiclone mechanism
Non-benzo hypnotics
Act via BZ1 subtype of GABA receptor (binds GABA but not where benzo’s attach)
Short duration because of rapid metabolism by liver enzymes
Zolpidem, Zaleplon, Eszopiclone use
Insomnia
Zolpidem, Zaleplon, Eszopiclone toxicity
Ataia headache confusion Modest day after psychomotor depression slight amnesia
Memantine mechanism
NMDA receptor antagonist - prevents excitotoxicity
Memantine use
Alzheimer’s Dementia
Memantine side effects
Dizziness, confusion, hallucination
Butorphanol mechanism
kappa opioid agonist and mu opioid partial agonist
analgesia
Butorphanol uses
Severe pain (migrane / labor)
Butorphanol toxicity
Opioid withdrawl symptoms if patient is also taking full opioid agonist
OD not easily reversed with naloxone.
Less respiratory depression than full opioid
Tramadol mechanism
Weak opioid agonist
Inhibits 5-HT and NE reuptake
Tramadol toxicity
Similar to opioids
Decreases seizure threshold
Serotonin syndrome
Ethosuximide mech
blocks thalamic T-type Ca channels
Ethosuximide uses
Absence seizures
Ethosuximide toxicity
GI, fatigue, headache, urticaria, Steven-Johnson syndrome.
EFGHIJ—Ethosuximide causes Fatigue, GI distress, Headache, Itching, and Stevens-Johnson syndrome
Phenytoin mech
Increases Na+ channel inactivation; zero-order kinetics
Phenytoin uses
Simple seizures
Complex seizures
Tonic-clonic seizures
Status epilepticus
Phenytoin toxicity
Nystagmus diplopia ataxia sedation gingival hyperplasia hirsutism peripheral neuropathy megaloblastic anemia teratogenesis (fetal hydantoin syndrome) SLE-like syndrome induction of cytochrome P-450 lymphadenopathy Stevens- Johnson syndrome osteopenia
Carbamazepine mech
Increase Na+ channel inactivation
Carbamazepine use
Simple
Complex
Tonic-clonic
Carbamazepine toxicity
Diplopia, ataxia, blood dyscrasias (agranulocytosis, aplastic anemia), liver toxicity, teratogenesis, induction of cytochrome P-450, SIADH, Stevens-Johnson syndrome
Valproic acid mech
Na+ channel inactivation, GABA concentration by inhibiting GABA transaminase
Valproic acid use
Simple
Complex
Tonic-clonic*
Absence seizures
Valproic acid toxicity
GI, distress, rare but fatal hepatotoxicity (measure LFTs), neural tube defects in fetus (spina bifida), tremor, weight gain, contraindicated in pregnancy
Gabapentin mech
Primarily inhibits high- voltage-activated Ca2+ channels; designed as GABA analog
Gabapentin use
Simple
Complex
Tonic-clonic
Gabapentin toxicity
Sedation, ataxia
Topiramate mech
Blocks Na+ channels, Increases GABA action
Topiramate use
Simple
Complex
Tonic-clonic