Syndromes Flashcards
Carney Complex. AKA (3)?
AKA LAMB syndrome (Lentigenes, Atrial myxomas, Mucocutaneous myxomas, Blue nevi), NAME syndrome (Nevi, Atrial myxomas, Myxoid neurofibroma, Ephelides), or Swiss syndrome. AD condition. The majority (Carney Complex type I) are caused by mutations in the PRKAR1-alpha gene on 17q24, which has been suggested to function as a tumor-suppressor gene. Carney Complex type II involves chromosome 2. 7% of all cardiac myxomas are associated with Carney complex. M=F. Mean age at Dx: 10-20 years.
Carney Triad.
Characterized by the presence of at least 2 of the following 3: Gastric epithelioid leiomyosarcoma (now called GIST), extraadrenal paraganglioma, pulmonary hamartoma/chondroma. Primarily affects young women. Not familial.
TSC1 and TSC2 genes.
Tuberous Sclerosis Complex genes. TSC1 is located on 9q34 and encodes the protein hamartin (130 kDa). TSC2 is located on 16p13.3 and encodes the protein tuberin (198 kDa). Both proteins are highly conserved and ubiquitously expressed. Hamartin and tuberin form a physical and functional heterodimer complex, in which hamartin functions as the regulatory component, stabilizing tuberin and facilitating the tuberin catalytic function as a GTPase-activating protein. Tuberin, which is assumed to be the functional component of this protein complex, is multifunctional, and involved in the regulation of cell size, cell cycles, translation, transcription, apoptosis, and cell differentiation. A major function of the TSC1 (hamartin)-TSC2 (tuberin) complex is its role as a GTPase-activating protein against Rheb (Ras homolog enriched in brain), which in turn regulates mTOR (mammalian target of rapamycin) signaling. The major function of mTOR is to phosphorylate and activate downstream targets p70S6K (p70 ribosomal protein S6 kinase) and 4E-BP1. Deficiency or dysfunction of the encoded proteins, hamartin or tuberin, respectively, result in constitutive activation of mTOR and downstream S6K and 4E-BP1, leading to increased protein translation and, ultimately, to inappropriate cellular proliferation, migration, and invasion.
What are 3 tumors in the PEComa famiy that are seen in tuberous sclerosis?
Angiomyolipoma, clear cell “sugar” tumor, and lymphangioleiomyomatosis.
What are 4 familial hyperparathyroidism syndromes?
MEN1, MEN 2A, HPT-JT (hyperparathyroidism-jaw tumor syndrome), FIHP (familial isolated hyperparathyroidism).
What is HPT-JT syndrome?
HPT-JT (hyperparathyroidism-jaw tumor) syndrome is an inherited disorder with incomplete penetrance. The disorder may be characterized by parathyroid adenoma or carcinoma, benign fibro-osseous lesions of the mandible or maxilla, and renal cysts or tumors. Approximately 80% of patients have hyperparathyroidism and up to 15% of these patients have parathyroid carcinoma. The HRPT2 gene (for ‘‘hyperparathyroidism 2’’) is a putative tumor suppressor gene that was identified and has been mapped to 1q25–q31. The gene encodes a protein named parafibromin for its relationship to parathyroid disease and fibro-osseous jaw lesions. While HPT-JT syndrome is an exceedingly uncommon entity, with an unknown incidence or prevalence, like MEN, it should be considered in the differential diagnosis for the adolescent presenting with hyperparathyroidism.
What renal neoplasms are seen in patients with Birt-Hogg-Dube syndrome?
Patients with BHD syndrome have multifocal renal tumors that include hybrid tumors (renal oncocytoma + chromophobe RCC), oncocytomas, chromophobe RCCs, clear cell RCCs, and papillary RCCs.
What determines type 1 and type 2 von Hippel-Lindau syndrome?
The absence of pheochromocytoma (type 1) or the presence of pheochromocytoma (type 2). Certain genotype-phenotype correlations have been established; Type 1 disease is associated with loss of VHL protein through large deletions or nonsense mutations, while type 2 disease is associated with germline VHL missense mutations.
For the following renal cystic diseases, give the cancer risk and the most common renal tumor types: ESRD and ACD of the kidney, von Hippel-Lindau disease, tuberous sclerosis complex, autosomal-dominant polycystic kidney disease.
ESRD and ACD of the kidney; cancer risk 3-7%; ACD-associated RCC, clear cell papillary RCC, usual types of RCC (papillary, clear cell, chromophobe). von Hippel-Lindau disease; cancer risk 45-60%; clear cell RCC. Tuberous sclerosis complex; cancer risk 2-3%; angiomyolipoma, clear cell RCC, oncocytoma, RCC unclassified/TSC-related. Autosomal-dominant polycystic kidney disease; cancer risk equivocal; clear cell RCC, papillary RCC.
What is Austrian syndrome?
Austrian syndrome was first described by Robert Austrian in 1957. The classical triad consists of meningitis, pneumonia, and endocarditis all caused by Streptococcus pneumoniae. It is associated with alcoholism, due to the presence of hyposplenia, and can been seen in males between 40–60 years old.
___% of medullary thyroid carcinomas occur in a relatively young population in association with MEN2 syndrome; the remainder are sporadic and may occur at any age.
15-20% of medullary thyroid carcinomas occur in a relatively young population in association with MEN2 syndrome; the remainder are sporadic and may occur at any age.
Overview of MEN syndromes, prevalence, and gene(s) involved.
MEN1 (eponym Wermer syndrome). MEN2 encompasses MEN 2A (eponym Sipple syndorome), MEN 2B (Gorlin syndrome; multiple other eponyms such as Gorlin-Vickers syndrome, Williams-Pollock syndrome, and Wagenmann-Froboese; also used to be called MEN3), and FMTC (Familial Medullary Thyroid Cancer, no eponym). For prevalences, MEN1 = 1 in 35,000; MEN 2A = 1 in 40,000; MEN 2B = 1 in 40,000. For gene mutations, MEN1 = MEN1 gene; MEN 2A = RET gene; MEN 2B = RET gene; FMTC = RET and NTRK1 genes. MEN1 is due to a variety of germline mutations of the MEN1 gene, which is located on 11q13. MEN2 is due to germline mutations in the RET proto-oncogene, which is located on 10q11.2.
What tumors are seen in the subtypes of MEN syndrome?
MEN1: Pancreatic tumors (gastrinoma 50%, insulinoma 20-30%, VIPoma 12%, glucagonoma 33%. MEN 2B: Medullary thyroid carcinoma 85%, pheochromocytoma 50%, mucosal neuroma 100%, marfanoid body habitus 80%. FMTC: Medullary thyroid carcinoma 100%.
Compare and contrast the two main methods of testing for defective mismatch repair function in Lynch syndrome.
IHC and PCR are the two main methods. IHC analysis of mismatch repair protein expression in tumor tissue (MMR-IHC) can reveal the identity of the defective protein for targeted genomic sequencing yet will “miss” a small percentage of cases with expressed but functionally defective MMR proteins. PCR analysis of a panel of microsatellite DNA sequences (MSI-PCR) demonstrates defective mismatch repair function. MSI-PCR, if abnormal, does not elucidate which gene is defective and will “miss” a small percentage of cases with a weak phenotype, as may be seen in MSH6 loss. It should also be noted that loss of MLH1 expression may be associated with non-heritable, epigenetic events, especially in older patients.
Lynch syndrome has mutations in what genes?
The hallmark of Lynch syndrome is a genetic mutation in one of the family of DNA mismatch repair (MMR) protein genes (MLH1, MLH3, MSH2, MSH6, PMS2). These proteins function to repair errors in replication of DNA at short repetitive sequences (microsatellites). Lynch syndrome is associated with a high risk of colon and endometrial cancers, as well as increased risk of urothelial, small bowel, hepatobiliary, and pancreatic cancer. Further, 10-15% of sporadic colon, endometrial, and gastric tumors may harbor a somatic, non-germline MMR mutation or loss of expression.
What antibody panel is typically used for mismatch repair detection for Lynch syndrome?
Most labs have an MMR-IHC panel consisting of antibodies to four MMR proteins: MLH1, MSH2, MSH6, and PMS2. For efficiency and cost savings, some advocate primary screening with only MSH6 and PMS2. Intact expression of MSH6 and PMS2 generally translates to intact expression of MLH1 and MSH2; aberrant expression of MSH6/PMS2 then requires further IHC characterization. This strategy is based on the endogenous pairing of mismatch repair proteins, and an understanding of pairing is also necessary to interpret staining results. MLH1 and PMS2 form a heterodimer; if MLH1 is lost, PMS2 is also destabilized and expression is undetectable. However, since PMS2 has other binding partners, mutation or loss of PMS2 does not affect expression of MLH1. The MSH2/MSH6 heterodimer functions similarly; an MSH2 defect leads to loss of both MSH2 and MSH6, while an MSH6 mutation shows loss of MSH6 expression and intact MSH2 expression.
For testing for Lynch syndrome, most labs have an MMR-IHC panel consisting of antibodies to four MMR proteins: MLH1, MSH2, MSH6, and PMS2. Why do some advocate primary screening with only MSH6 and PMS2?
For efficiency and cost savings, some advocate primary screening with only MSH6 and PMS2. Intact expression of MSH6 and PMS2 generally translates to intact expression of MLH1 and MSH2; aberrant expression of MSH6/PMS2 then requires further IHC characterization. This strategy is based on the endogenous pairing of mismatch repair proteins, and an understanding of pairing is also necessary to interpret staining results. MLH1 and PMS2 form a heterodimer; if MLH1 is lost, PMS2 is also destabilized and expression is undetectable. However, since PMS2 has other binding partners, mutation or loss of PMS2 does not affect expression of MLH1. The MSH2/MSH6 heterodimer functions similarly; an MSH2 defect leads to loss of both MSH2 and MSH6, while an MSH6 mutation shows loss of MSH6 expression and intact MSH2 expression.
How is the MMR-IHC panel for Lynch syndrome testing interpreted?
Since MMR proteins function in DNA repair, nuclear staining of replicating cells is expected normally. Epithelial cells at the base of normal colonic crypts are convenient internal controls, as are lymphocytes; in the uterus, endometrial stroma and myometrium may serve as internal control. MMR-IHC assays are particularly susceptible to under-fixation, especially MLH1 and PMS2. If internal controls are negative, repeat staining on another tissue block should be attempted; submission of additional tissue sections after longer fixation might also be helpful. MMR proteins may show patchy expression, especially MSH6 in post-chemotherapy specimens. Thus, even a low percentage of cells with nuclear staining should be scored as intact protein expression. In the case of MMR-IHC, positive staining is a normal result, while negative (lack of staining) is abnormal and suggests the need for further testing or genetic counseling. Other considerations in interpretation of IHC results include the fact that loss of expression of MLH1 may be due to a germline mutation in the MLH1 gene (Lynch syndrome), but is perhaps more commonly due to hypermethylation of the MLH1 promoter in older individuals. BRAF point mutations (V600E) are closely associated with this hypermethylation, and many testing algorithms advocate BRAF mutational analysis before embarking on genetic testing in patients whose colon cancers show loss of MLH1 expression.
What are histologic features seen in cortical tubers associated with tuberous sclerosis?
Histological sections of cortical tubers can show variable features. Common to all tubers is a disorganized cortical architectural pattern or cortical dysplasia (malformation of cortical development). This usually consists of an altered cortical architecture, including abnormal cortical layering, an abnormal orientation or positioning of neurons within the cortex, occasional dysmorphic neurons, and large ballooned cells. The ballooned cells are characterized by abundant eosinophilic cytoplasm with eccentrically placed round to oval nuclei. The cortex usually demonstrates marked reactive gliosis, most pronounced under the cortical surface (subpial gliosis) and around blood vessels in the superficial cortex. Dystrophic calcification is variably present.
Spinal muscular atrophy is a recessive disorder caused by loss of what genes?
Spinal muscular atrophy is a recessive disorder caused by loss of the survival motor neuron (SMN1 and SMN2) genes. Spinal muscular atrophy, types I, II, III, and IV, reflect increasing age of onset and decreasing disease severity.
Amyotrophic lateral sclerosis is a disease of motor neurons, linked to the accumulation of pathogenic proteins in the central nervous system, including __ and __. About __% of individuals with ALS have at least one other affected family member (familial ALS). Superoxide dismutase gene mutations occur in __% of patients with familial ALS and __% of sporadic cases.
Amyotrophic lateral sclerosis is a disease of motor neurons, linked to the accumulation of pathogenic proteins in the central nervous system, including TDP-43 and ubiquitin. About 10% of individuals with ALS have at least one other affected family member (familial ALS). Superoxide dismutase gene mutations occur in 20% of patients with familial ALS and 3% of sporadic cases.
Locations of hemangioblastoma.
Hemangioblastomas are relatively uncommon neoplasms that can occur sporadically or in the setting of von Hippel- Lindau disease. Sporadic cases are usually seen in the cerebellum as a single lesion in patients with a mean age of 45 years. Tumors associated with von Hippel-Lindau disease present at a younger age (mean, 36 years), they can be multiple, and they can occur in unusual locations, such as retina, brain, and spinal cord.
What two syndromes have Lynch syndrome-like findings (can be considered Lynch syndrome variants) and may also have germline mismatch repair gene mutations?
Muir-Torre syndrome (sebaceous neoplasms of the skin and internal malignancies typical of Lynch syndrome) and Turcot syndrome (central nervous system tumors and colorectal adenomas or cancer).
In what syndrome is the STK11 gene mutated?
Peutz-Jeghers syndrome. The STK11 gene is also called STK11/LKB1. STK11 = Serine-Threonine Kinase 11. LKB1 = Liver Kinase B1. It encodes a member of the serine/threonin kinase and regulates cell polarity and functions as a tumor suppressor.