Stochastik Wiederholung & Binominalverteilung Flashcards
Was sind Zufallsvorgänge?
Vorgänge mit nicht vorhersehbaren und sich gegenseitig ausschließenden Ergebnissen heißen Zufallsvorgänge. Unter kontrollierten Bedingungen
Was ist der Ergebnisraum?
Verschiedenen möglichen Ergebnisse eine Zufallsvorgangs (Ergebnismenge)
K
Anzahl der möglichen Ergebnisse beim n=… ist K
Was ist ein kleines omega
einzelnen möglichen Ergebnisse
Was ist einZufallsereignis?
ist die Zusammenfassung verschiedener Ereignisse (alle Fälle in denen kopf einmal vorkam)
Elementarereignisse
enthalten als Element nur ein einziges Ergebnis
leere Menge {} oder ∅
unmögliches Ereignis, da bei
einem Zufallsvorgang immer ein Ereignis eintreten muss.
Ereignissmenge
ist ein sicheres Ereignis , da ein Ereignis eintreten wird
Disjunkte Ereignisse
schließen sich gegenseitig aus, dass heißt sie haben keine überschneidenden Ergebnisse
SCHNITTMEGE IST EINE LEERE MENGE
Was sind Schnitt & Vereinigungsmengen?
Ereignisse
Laplace WSK
Wenn alle Elementarereignisse gleich wahrscheinlich sind und die Anzahl der möglichen Ergebnisse endlich ist, dann gilt für die Wahrscheinlichkeit P eines Ereignisses A
𝑃 𝐴 = Anzahl der für 𝐴 günstigen Ergebnisse/ Anzahl 𝐾 aller möglichen Ergebnisse
Was beschreibt die WSK P?
die Sicherheit, dass ein Ereignis eintritt
Wozu verwenden wir die Kombinatorik?
Um die Anzahl möglicher Ereignisse zu bestimmen,
Welche Urnenmodelle git es in der Kobinatorik?
Modell mit Zurücklegen und mit Berücksichtigung der Reihenfolge
Modell ohne Zurücklegen und mit Berücksichtigung der Reihenfolge
Modell mit Zurücklegen und ohne Berücksichtigung der Reihenfolge
Modell ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge
Modell mit Zurücklegen und mit Berücksichtigung der Reihenfolge
k: Anzahl der möglichen Einzelereignisse n: Anzahl der Ziehungen
(Beispiel :Eine Lerngruppe aus 6 Studierenden, welche eine Klausur entweder bestehen oder nicht bestehen, hat 𝐾 = 26 = 64 mögliche bestanden/nicht- bestanken – Kombinationen.)
Modell ohne Zurücklegen und mit Berücksichtigung der Reihenfolge
Anzahl der möglichen Einzelereignisse n: Anzahl der Ziehungen
.Beispiel: 8 Studierende werden zufällig auf 5 Termine für mündliche Prüfungen verteilt. Es gibt also 𝐾 = 8! = 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 = 6720 Möglichkeiten. Jede einzelne
3! 1
Terminzuteilung hat also eine Wahrscheinlichkeit von 𝑃 𝐴 =1/6720 .
Modell ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge
k: Anzahl der Elemente der Grundgesamtheit n: Anzahl der Ziehungen
Beispiel: In einer Vorlesung mit 150 Teilnehmern werden zufällig 5 ausgewählt, um
einen Fragebogen zur Evaluation auszufüllen. Es gibt also 𝐾 = 150 = 591.600.030
mögliche Fünfergruppen.
Modell mit Zurücklegen und ohne Berücksichtigung der Reihenfolge
k: Anzahl der Elemente der Grundgesamtheit n: Anzahl der Ziehungen
Beispiel: Beim Kniffeln werden 5 Würfel gewürfelt. Jeder Würfel kann 6 mögliche Ergebnisse anzeigen. Dadurch sind 6 + 5 − 1 = 252 erwürfelte Kombinationen
beim Kniffel möglich.
5
Binominalverteilung
wiederholten Zufallsvorgang mit zwei möglichen Ausgängen. Wenn die Wahrscheinlichkeit für einen einzelnen Zufallsvorgang bekannt ist, kann geschätzt werden, wie groß die WSK für eine bestimmte Anzahl ist.
Durch welche Parameter lässt sich die Binominalverteilung beschreiben.
Erwartungswert E(x) und Varianz
Welche weiteren Verteilungen gibt es neben der Binominalverteilung für diskrete Zufallsvariablen?
Die Multinomialverteilung ist für Fälle wo jedes Zufallsereignis nicht nur zwei sondern mehr mögliche Ausgänge hat.
❖Im Unterschied zur Binomialverteilung sind die einzelnen Ziehungen bei der hypergeometrischen Verteilung solche ohne Zurücklegen.
❖ Bei der geometrischen Verteilung erfasst die Zufallsvariable die Zahl der Versuche, die nötig sind, bis ein Ereignis zum ersten Mal auftritt (zB eine 1 gewürfelt wird).
❖Die Poisson-Verteilung wird genutzt, um die Wahrscheinlichkeit von seltenen Ereignissen innerhalb von begrenzten Zeitintervallen zu beschreiben.
WSK nach Kolmogorov
Die Axiome gelten für endliche Mengen W möglicher Ergebnisse. Sie können aber auch auf unendliche Mengen verallgemeinert werden (die Details sparen wir uns). Die Wahrscheinlichkeit P ist eine Funktion, die jedem Ereignis eine reelle Zahl zuordnet.
Axiome von Kolmogorov ?
Axiom 1: Nichtnegativität. Für alle Teilmengen A von e
Rechenregeln für die WSK
Rechenregel 1: Die Wahrscheinlichkeit eines Ereignisses B ist größer oder gleich der Wahrscheinlichkeit eines Ereignisses A, wenn A eine Teilmenge von
B ist.
Rechenregel 2: Das Gegenereignis 𝐴 strich enthält alle Ergebnisse von 𝛺, die nicht
her
in A enthalten sind. Für die Wahrscheinlichkeit von 𝐴strich gilt:
P(Astrich) = 1-P(A)
Rechenregel 3: Für die Wahrscheinlichkeit von Vereinigungsmengen von
nicht-disjunkten Mengen gilt:
𝑃𝐴∪𝐵 =𝑃(𝐴) +𝑃(𝐵) −𝑃(𝐴∩𝐵 )
Rechenregel 4: Auch für mehr als zwei paarweise disjunkte Ereignisse gilt, dass die WSK der Vereinigungsmenge den addierten Einzelwahrscheinlichkeiten entspricht.