Regulation of Na, osmolarity and ECFV Flashcards
Unregulated fluid loss occurs due to
- sweat
- stool
- respiratory
(insensible)
Regulated fluid loss occurs due to
Renal
- urine can vary from 50-1200 mOsm
- measured as specific gravity (1.002-1.050)
- obligate urine volume to eliminate waste products
Fluid intake
Thirst
- stimulus generates desire for and allow the intake of water
Electrolyte loss
Occurs with accompanying water loss
- unregulated: sweat, stool
- regulated: renal
Electrolyte intake
Cravings or hunger
- depends on availability
Why is the electrolyte balance across cell membranes essential?
- partitioning water between intra and extracellular fluid spaces
- keeping cells from shrinking/swelling
- allows for electrical charge related actions
In a person after drinking 1 liter of water:
Little change in - plasma mOsm - urine electrolyte conc. Big change in - urine mOsm - urine production *primarily regulated by ADH in the distal segments of the nephron*
What happens when there is excess water in the body?
Body fluid osmolarity is reduced, kidney excretes urine with a low osmolarity
What happens when there is a deficit of water in the body?
Extracellular fluid osmolarity is high, kidney excretes urine with a high concentration
Kidney can excrete a large volume of dilute urine or a small volume of concentrated urine without major changes in ______
Rates of excretion of solutes (Na and K)
____ of sodium and water excretion is regulated reabsorption
10%
- one can be regulated independently of the other
Formation of dilute urine
Decrease reabsorption of water
How do you decrease reabsorption of water?
Decrease ADH release, which decreases water permeability of the distal tubule, cortical and medullary duct
In the proximal tubule, water and solutes are reabsorbed ______
At the same pace (iso-osmotic)
Water reabsorption in the thin descending loop
Passive due to interstitial concentration gradient
- unregulated
- could get renal medullary washout due to overconsumption of water
When the renal medulla is no longer hypertonic, the kidney can no longer ______
Concentrate urine
Remaining urine after the thick ascending loop becomes more ____ without _____
Dilute; any increase in volume
The ability to form concentrated urine is dependent on what 2 things?
- ADH: production in the CNS and appropriate tubular response
- renal medullary hypertonicity
Continuous reabsorption of electrolytes adds to _____
Increasing renal medullary hypertonicity
What are the 2 basic requirements for forming concentrated urine?
- high level of ADH
- hihg osmolarity of renal medullary interstitial fluid
How does increased reabsorption of water occur?
Increase ADH release
- increases water permeability of distal tubule, cortical and medullary collecting ducts
- increases urea permeability of medullary collecting duct, which increases medullary tonicity
Countercurrent multiplier mechanism
Process by which renal medullary interstitial fluid becomes hyperosmotic
- depends on arrangement of loops of Henle and vasa recta
Factors contributing to renal medullary hypertonicity
- active transport of solutes from thick ascending limb into medullary interstitium without reabsorption of water
- active transport of Na from medullary collecting ducts into interstitium (increased with aldosterone)
- facilitated diffusion of urea from medullary collecting ducts into interstitium (ADH)
- diffusion of small amounts of water into medullary interstitium, which is rapidly removed
- counter-current multiplier mechanism
Loop of Henle is only able to establish a ______ gradient
200 mOsm, before back diffusion of electrolytes results in equilibration
Why are juxtamedullary nephrons most susceptible to NSAID toxicity?
O2 tension decreases the deeper you go into the renal medulla, but the tubular epithelial cells are the most metabolically active as we progress to dehydration
What is a major reason for high medullary osmolarity?
Active transport of sodium and co transport of potassium, chloride, etc from thick ascending loop into the interstitum