Protein Function- Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Flashcards

1
Q

associação proteína- ligando

A

Function of many proteins: reversible binding of other molecules= ligands

ligand= any kind of molecule: gás, outra proteína, …

TRANSIENT NATURE of protein ligand interactions is critical to life–> allows rapid + reversible response to changes (environment, metabolism) –> permite funções de sinalização, transporte, regulação

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Binding: Quantitative Description

A

association rate constant ka/ dissociation rate constant kd –> with time: equilibrium of association and dissociation rates –> equilibrium association constant Ka (or eq.dis.const. Kd)

ka [P] [L] = kd [PL]

Ka = [PL]/ [P][L] = 1/ Kd

In practice, we can often determine the fraction of occupied binding sites (θ)

θ= [L]/ ([L]+ Kd)

Ka^= 50% dos sítios ocupados!!

–> medida da afinidade: quanto maior for afinidade, menor é a concentração necessária para atingir 50% saturação, menor é Ka

—- When a ligand is a gas, binding is expressed in terms of partial pressures
θ= [L]/ (Kd +[L])
–> θ= pO2/ (p50 + pO2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Globins- Função, Necessidade?

A

Oxygen- Binding Proteins

Biological problems:
• Protein side chains lack affinity for O2
+ H202–> peróxido, superóxido, hidróxido… espécies parcialmente reduzidas de O2 que causam modificações químicas nos AA
• Some transition metals bind O2 well but would
generate free radicals if free in solution
• Organometallic compounds such as heme are more suitable, but Fe2+ in free heme could be oxidized to Fe3+ (very reactive!)

–> Biological solution:
• Capture O2 with heme that is protein bound! –> Myoglobin, hemoglobin

Proteina: ligar Heme + regular função por interações…

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Structures of Porphyrin and Heme

A

• Heme: complex organic ring structure (protoporphyrin IX), (anel tetrapirrólico) with a bound iron atom in its ferrous (Fe2+) state!

[porfirina+ferro= heme]

• The iron atom of heme has 6 coordination bonds: 4 in the plane of (and bonded to) the flat porphyrin ring system and 2 perpendicular to it.

Há vários tipos de heme conforme os grupos R –> associam à proteína de forma lig. diferente

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Oxygen binding: structural effect

A

Oxygen binding (pode-se ligar por baixo ou cima) changes the position of the iron ion!

[deoxyhemoglobin]
iron ion: slightly outside the plane of the porphyrin in deoxymyoglobin heme

[oxyhemoglobin]

  • -> moves into the plane of the heme on oxygenation
  • -> alteração conformacional na proteína! O grupo inferior (?) (His) tem de se ajustar
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Myoglobin

A

(Mr 16,700 ~150AA; abbreviated Mb): relatively simple oxygen-binding protein (–>single binding site for O2), found in almost all mammals, primarily in muscle tissue.
[fun fact: a baleia tem muito mais mioglobina que os humanos–> usada para armazenar O2 em períodos de apneia]
• made up of eight a-helical segments connected by bends
• topologia alpha (~78% AA)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Myoglobin- Structure

A

proximal His residue - plane of porphyrin ring system - O2

His distal (His E7, His64) (his=> anel imidazol, é protonável): não faz parte da coordenação direta ao Fe liga ao O2 por ponte de H –> estabilidade, seletividade

Arranjo com his distal evita libertação do ião superóxido! (interação ferro- O2 é uma combinação de híbridos de ressonância: fe2+ e o2 vs. fe3+ e o2 -)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Myoglobin- Oxygen binding and conformational breathing

A

binding of O2 to the heme in myoglobin also depends on molecular motions/ “breathing” (protein)

heme: deeply buried in the folded polypeptide! Num binding pocket! (No direct path for O2 from the surrounding solution to the ligand binding site)
=> Rapid molecular flexing of the AA side chains –> transient cavities in the protein structure –> paths for O2
(If protein were rigid, O2 could not enter/ leave the heme pocket at a measurable rate)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

CO vs. O2 binding to heme

A
  • CO has similar size and shape to O2: it can fit to the same binding site.
  • CO binds heme over 20,000 times better than O2 (carbon in CO has a filled lone electron pair that can be donated to vacant d-orbitals on the Fe2+)

–> The protein pocket decreases affinity for CO, but it still binds about 250 times better than oxygen!!

=> CO is highly toxic, as it competes with oxygen!
-It blocks the function of myoglobin, hemoglobin, and mitochondrial cytochromes involved in oxidative phosphorylation (Fe deixa de estar disponível p/ transporte de O2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Hemoglobin

A

(Mr 64,500; abbreviated Hb) is roughly spherical, diameter of nearly 5.5 nm.
- tetrameric protein with four heme prosthetic groups (1 associated with each polypeptide chain)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Hemoglobin- structure

A

-tetramer of two subunits (alpha2beta2), each similar to myoglobin, but: AAs only 20% identical! –> redundância dos AA (mesma estutura com sequência diferente)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Could Myoglobin Transport O2?

A
  • pO2 in lungs (~ 13 kPa): it sure binds oxygen well
  • pO2 in tissues(~4 kPa): it will not release it! Também imediatamente saturada, mesmo a baixa []!

=> For Effective Transport Affinity Must Vary with pO2! Curva sigmoidal, como na hemoglobina

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

How Can Affinity to Oxygen Change?

A

COOPERATIVITY (valor energético de transição vai diminuindo)

–> must be a protein with multiple binding sites!
–> that are able to interact with each other
phenomenon= cooperativity
=> dinâmica conformacional: interação entre haver ligação num sítio e a afinidade doutro!

-negative cooperativity
1st binding event reduces
affinity at remaining sites

-positive cooperativity
1st binding event increases affinity at remaining site! –> sigmoidal binding curves –> hemoglobin!
=> stages:
1: no ligand, low-affinity state- “parts” flexible/ somewhat unstable, few conformations facilitate ligand binding
2: ligand bound to 1 subunit –> stabilises a high-affinity conformation! More of the structure is stable, none unstable; rest of polypeptide- higher-affinity conformation!, stabilized by prot-prot interactions of 1st subunit
3: binding of 2nd ligand to 2nd subunit occurs with higher affinity –> positive cooperativity

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Hemoglobin- Oxygen binding

A

Hemoglobin Undergoes a Structural Change on Binding Oxygen (movimento mecânico):

binding of O2 –> heme assumes a more planar conformation –> shifting the position of the proximal His (logo também deslocação do Fe) and the attached F helix (pq his está inserida numa hélice) –> reorganização de conjunto de interações entre subunidades (–>água, interações, dinâmica…)!

This triggers the T → R transition–> Cooperatively:

1st molecule of O2 that interacts with deoxyhemoglobin binds weakly (binds to a subunit in the T state)
--> however: conformational changes that are communicated to adjacent subunits--> easier for additional molecules of O2 to bind
=> T n R transition occurs more readily in the 2nd subunit (once O2 is bound to the 1st subunit)
The last (4th) O2 binds to a heme in a subunit that is already in the R state--> much higher affinity than the 1st molecule
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

T-state vs. R-state

A

T = tense state
– more interactions, more
stable
– lower affinity for O2

R = relaxed state
– fewer Interactions, more
flexible
– higher affinity for O2

In hemoglobin: Conformational change(T–>R) involves breaking ion pairs between the α1-beta2 interface –> transição “relativamente dramática”, involve quebra de pontes salinas (–> energia algo maior que pontes de H); tem de haver amplitude mecânica suficiente para que haja disrupção

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Subunit Interactions in Hemoglobin

A

The strongest subunit interactions occur between unlike subunits

When oxygen binds there is a large change at the α1β2 contact, with several ion pairs broken

mapa de interações eletrostáticas (T–>R):

  • beta2: Asp- e His+ , tal como COO- com Lys+ de alpha1
  • alpha1: também Arg+ com Asp- de alpha2 e ao contrário; ainda COO- com NH3+ de alpha 2 e ao contrário
  • alpha2: ainda: Lys+ com COO- de beta1
  • beta1: também His+ e Asp-

Some ion pairs stabilise the T state of deoxyhemoglobin: His+ e Asp- nas sub. beta; Lys+ e COO- da His entre alpha e beta

17
Q

Allosteric Regulation

A

Allosteric protein
– Binding of a ligand to one site affects the binding properties of a different site on the same protein!

– positive or negative
– homotropic
• normal ligand of the protein is the allosteric regulator
– or heterotropic
• A different ligand affects binding of the normal ligand

Cooperativity= positive homotropic regulation

18
Q

Hemoglobin- other functions

A

Hemoglobin also Transports
H+ and CO2

Hemoglobin carries 2 end products of cellular respiration: H+ and CO2 from the tissues to the lungs and kidneys (where they are excreted)

Inside a red blood cell, CO2 (produzido por células de tecido) reacts with water to form carbonic acid (H2CO3), in a reaction catalyzed by: carbonic anhydrase. Carbonic acid dissociates to form HCO3 - and H+ –> drop in pH inside the red cell= acidificação da célula
(Para pulmões: contrário, CO2 entra nos pulmões)

19
Q

pH Effect on O2 Binding to Hemoglobin

A

Actively metabolizing tissues generate H+, lowering the pH of the blood near the tissues relative to the lungs (catalyzed by carbonic anhydrase)
(CO2 + H2O ↔ HCO3− + H+)

The pH difference between lungs and metabolic tissues increases efficiency of the O2 transport! –> effect of pH and CO2 concentration on the binding and release of oxygen by hemoglobin= Bohr effect

20
Q

Bohr effect- chemical basis

A

Hb Affinity for oxygen depends on the pH

H+ binds to Hb and stabilizes the T state pq. protonates His146, which then forms a salt bridge with Asp94 –> leads to the release of O2 in the tissues!

21
Q

Hemoglobin and CO2 Export

A
  • CO2 is produced by metabolism in tissues and must be exported.
  • 15–20% of CO2 is exported in the form of a carbamate on the amino terminal residues of each of the polypeptide subunits (COO-) (4 cadeias= 4 N-terminais por Hb, como [] Hb no eritrócito é alta–> grande quantidade de residues terminais disponíveis)

• Notice:
– The formation of a carbamate yields a proton & forms additional salt bridges,
stabilizing the T state = Bohr effect

22
Q

2,3-Bisphosphoglycerate

A

Regulates O2 Binding

• Negative heterotropic regulator of Hb function
(different from ligand, diminui afinidade!) –> diminui a afinidade do O2 pela Hg
• Present at mM concentrations in erythrocytes
• produced from an intermediate in glycolysis

  • Small negatively charged molecule, binds to the positively charged central cavity of Hb + stabilises the T states –> diminui afinidade de Hg para O2
  • oxygenation: The binding pocket for BPG disappears! Transition to the R state follows
23
Q

Sickle-Cell Anemia= Anemia das células falsiformes

A

Due to a Mutation in Hemoglobin

• Glu6 → Val in the beta chain of Hb
• The new Valine side chain can bind to a different Hb molecule to form a strand similar to the amyloidgenic proteins! –> This sickles the red blood cells.
(= interação deixa de ser funcional –> hb perde função)
=> alteração da conformação –> exposição de uma superfície hidrofóbica (Phe, Leu… que estavam resguardadas) –>moléculas agregam + cristalizam, formam fibras insolúveis! Muito rígidas e resistentes à degradação (proteases… não têm centros ativos!)

  • Untreated homozygous individuals generally die in childhood.
  • Sickle cell hemoglobin is called hemoglobin S (HbS)
24
Q

Cooperativity- quantitative description

A

=> Hill equation (Archibald Hill, PN 1922)

log (theta/ (1-theta))= nlog[L] -logKd

=> Hill plot (log pO2 vs. log (theta/(1-theta))
declive= coeficiente de Hill, nH –> medida da cooperatividade:

n =1 no cooperativity
n > 1 positive cooperativity
n <1 negative cooperativity

[em teoria: nh no max. = n –> completa cooperatividade, todos sítios de lig. ligados simultaneamente, sem proteínas parcialmente saturadas; mas na pratica sempre menor]

hemoglobina: 1 (estado baixa afinidade, T) –>3–>1 (estado alta afinidade, R)
mioglobina: 1! sempre!

25
Q

Concerted cooperativity

A

modelo “tudo ou nada”, Monod, Wyman, Changeux 1965
-all subunits are postulated to be in the same conformation,
(either all low affinity, circ./ inactive or all high affinity/ active, squ.)=> undergo transition simultaneously

-Depending on the equilibrium, Keq, between circ. and squ. forms, the binding of one or more ligand molecules (L) will pull the equilibrium toward the squa. form

26
Q

Sequential cooperativity

A

Daniel Koshland 1966
each individual subunit can be in either the circ. or squ. form! (ligand binding can induce a change of conformation in an individual subunit)
=> many conformations, potential intermediate states possible!

Nem todas são preferenciais/ as mais eficientes

27
Q

CO binding to hemoglobin

A

tight binding–> COHb can accumulate over time –>mov. cumulativo

Healthy indiv: <1% of total Hb is complexed as COHb

CoHb ~50%: loss of consciousness –> efeito na afinidade dos restantes grupos heme para O2
=> a hemoglobin tetramer with two bound CO molecules can efficiently bind O2 in the lungs—but it releases very little of it in the tissues!

28
Q

Effect of BPG on O2 binding to Hg

A

BPG concentration in normal human blood: ~ 5 mM at sea level, ~ 8 mM at high altitudes

Sea level: Hg nearly saturated with O2 in the lungs, but just over 60% saturated in the tissues=> amount of O2 released in the tissues~ 38% of the maximum that can be carried in the blood!

High altitudes: O2 delivery declines by about 1/4, to 30% of maximum.
Mas: An increase in BPG concentration decreases the affinity of hemoglobin for O2 => ~ 37% of what can be carried is again delivered to the tissues

=> alteração fisiológica (aumento BPG) compensa alteração altitude (também menos O2 disponível…?) –> Fração de O2 transportado prat. igual! (também + BPG em pessoas com hipoxia, menor oxigenação dos tecidos, problemas sistema circulatório…)

29
Q

Hg fetal

A

Regulation of O2 binding to Hg by BPG has an important role in fetal development
–> A fetus must extract O2 from its mother’s blood => fetal Hg must have greater affinity than the maternal hemoglobin for O2
(se igual: competição!)

• The fetus synthesizes gamma subunits rather than alphabeta subunits, forming alpha2gamma2 Hg => tetramer with much lower affinity for BPG than normal adult Hg–> correspondingly higher affinity for O2

Dif. subunidades de Hg todas codificadas num gene –> desenvolvimento: vão se alterando Hg! (alguns res. dif–> interação dif –> afinidade, função dif) variação conforme necessidades, vão ficando mais complexas

30
Q

Globinopatias

A

-anemia das células falsiformes (1 AA mutado–> altera conform., expõe zonas hidrofóbicas –> promove interações…. => quando HbS é desoxigenada, fica insolúvel –> forma polímeros que agregam em fibras tubulares –> deformação eritrócitos…)

-talassémia
mutações: inactivam subunidade, deficiência funcional se mutação nos 2 alelos–> não tem beta-globina