Organic chemistry Flashcards

1
Q

structures of methane, ethane, ethene, ethanol, ethanoic acid

A

o 1​ carbon​ ​has​ ​the​ ​prefix​ ​of:​ ​Meth-
o 2​ ​carbons:​ ​Eth-
o 3​ ​carbons:​ ​Prop-
o 4​ ​carbons:​ ​But-
o Remember​ ​the​ ​first​ ​4​ ​prefixes​ ​using​ ​MEPB​ ​Monkeys​ ​Eat​ ​Peanut​ ​Butter
-suffix​ ​of​ ​any​ ​compound​ ​refers​ ​to​ ​the​ ​functional​ ​group
o Alkanes​ ​–ane​ ​(C-C)​ ​e.g.​ ​ethane
o Alkenes​ ​–ene​ ​(C=C)​ ​e.g.​ ​ethene
o Alcohols​ ​–ol​ ​(OH)​ ​e.g.​ ​ethanol
o Carboxylic​ ​acids​ ​–anoic​ ​acid​ ​(-COOH)​ ​e.g.​ ​ethanoic​ ​acid

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

type of compound present, given a chemical name ending in -ane, -ene, -ol, or -oic acid or a molecular structure

A
● -Ane​ ​:​ ​alkane
o Functional​ ​group​ ​(same​ ​group​ ​of​ ​atoms​ ​in​ ​each​ ​molecule​ ​that​ ​makes​ ​an alkane)​ ​is​ ​C-H​ ​/​ ​C-C​ ​(NOT​ ​C=C) 
● -Ene​ ​:​ ​alkene
o Functional​ ​group​ ​is​ ​C=C 
● -Ol​ ​:​ ​alcohol
o Functional​ ​group​ ​is​ ​OH 
● -Oic​ ​acid​ ​:​ ​carboxylic​ ​acid
o Functional​ ​group​ ​is​ ​COOH
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Name and draw the structural formulae of the esters which can be made from unbranched alcohols and carboxylic acids, each containing up to four carbon atoms

A

o Alcohol​ ​+​ ​carboxylic​ ​acid​ ​->​ ​ester​ ​+​ ​water
o ​Methanol​ ​+​ ​Ethanoic​ ​acid​ ​->​ ​Methyl​ ​Ethanoate​ ​+​ ​H2O
● How​ ​to​ ​name​ ​esters
o (prefix​ ​of​ ​alcohol​ ​+​ ​yl)​ ​+​ ​(name​ ​of​ ​carboxylic​ ​acid​ ​minus​ ​the​ ​“oic​ ​acid”​ ​+ oate)
o E.g.​ ​Meth-yl​ ​Ethan-oate
● the​ ​alcohol​ ​part​ ​is​ ​to​ ​the​ ​right​ ​normally​ ​with​ ​an​ ​H​ ​from
the​ ​–OH​ ​functional​ ​group​ ​being​ ​lost.
● The​ ​carboxylic​ ​acid​ ​part​ ​is​ ​to​ ​the​ ​left​ ​with​ ​an​ ​OH​ ​from
the​ ​–COOH​ ​functional​ ​group​ ​being​ ​lost
● H​ ​+​ ​OH​ ​→​ ​H​2O​ ​ ​(a​ ​by-product.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

fuels

A

coal, natural gas and petroleum

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

methane as the main constituent of natural gas

A
  • methane as the main constituent of natural gas

- methane=​ ​CH4​

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

petroleum

A

Petroleum is a mixture of hydrocarbons

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

properties of molecules within a fraction

A

●The​ ​shorter​ ​the​ ​molecules,​ ​the​ ​lower​ ​the​ ​temperature​ ​at​ ​which​ ​that​ ​fraction evaporates​ ​or​ ​condenses​ ​–​ ​and​ ​the​ ​lower​ ​its​ ​boiling​ ​point.
● Shorter​ ​the​ ​molecules,​ ​the​ ​less​ ​viscous​ ​it​ ​is.​ ​(more​ ​runny)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

uses of the fractions

A

– refinery gas for bottled gas for heating and
cooking
– gasoline fraction for fuel (petrol) in cars
– naphtha fraction for making chemicals
– kerosene/paraffin fraction for jet fuel
– diesel oil/gas oil for fuel in diesel engines
– fuel oil fraction for fuel for ships and home heating systems
– lubricating fraction for lubricants, waxes and polishes
– bitumen for making roads

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Homologous series

A

a ‘family’ of similar compounds with similar chemical properties due to the presence of the same functional group

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

general characteristics of a homologous series

A
  • Same general formula
  • Similar chemical properties
  • Common methods of preparation
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Describe and identify structural isomerism

A
  • Isomers are compounds that have same molecular formula but different structural formula.
  • Properties quite simmilar
  • M.p and B.p differ
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

properties of Alkanes (exemplified by methane)

A

● Generally​ ​unreactive,​ ​except​ ​in​ ​terms​ ​of​ ​burning

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

bonding in alkanes

A
  • Contain single bond

- General formula: Cn H2n +2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

substitution reactions of alkanes with chlorine

A

● Halogen​ ​+​ ​alkane​ ​–(UV)->​ ​halogenoalkane​ ​+​ ​hydrogen​ ​halide oe.g.​​Br2​​​​+​​C2​H​​6​​​​​-(UV)->​​C2​H​​5B​r​​+​​HBr
● Must​ ​be​ ​in​ ​the​ ​presence​ ​of​ ​ultraviolet​ ​radiation​ ​(UV)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

manufacture of alkenes and of hydrogen by cracking

A

● Hydrocarbons​ ​can​ ​be​ ​cracked​ ​to​ ​produce​ ​smaller,​ ​more​ ​useful​ ​molecules.​ ​This process​ ​involved​ ​heating​ ​the​ ​hydrocarbons​ ​to​ ​vaporise​ ​them.
● The​ ​vapours​ ​are:
o Either​ ​passed​ ​over​ ​a​ ​hot​ ​catalyst​ ​(silica​ ​or​ ​alumina)
o Mixed​ ​with​ ​steam​ ​and​ ​heated​ ​to​ ​a​ ​very​ ​high​ ​temperature​ ​(temperature
in​ ​the​ ​range​ ​of​ ​600-700 ̊C)​ ​so​ ​that​ ​thermal​ ​decomposition​ ​reactions​ ​can occur.
● The​ ​products​ ​of​ ​cracking​ ​include​ ​shorter​ ​chain​ ​alkanes​ ​and​ ​alkenes​ ​(or​ ​hydrogen)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

properties of alkenes

A

● Generally:
○ Addition​ ​reactions
○ Involves​ ​the​ ​removal​ ​of​ ​C=C​ ​double​ ​bond
○ C=C​ ​is​ ​very​ ​reactive​ ​and​ ​can​ ​easily​ ​react​ ​to​ ​form​ ​–C-C-
● reaction​ ​​ ​with​ ​bromine:
○ alkene​ ​+​ ​bromine​ ​→​ ​dibromoalkane
○ E.g.​ ​Ethene​ ​+​ ​bromine​ ​→​ ​1,2-dibromoethane
● reaction​ ​with​ ​steam:
○ alkene​ ​+​ ​steam​ ​→​ ​alcohol
○ E.g.​ ​Ethene​ ​+​ ​steam​ ​→​ ​ethanol
● reaction​ ​with​ ​hydrogen:
○ alkene​ ​+​ ​hydrogen​ ​→​ ​alkane
○ E.g.​ ​Ethene​ ​+​ ​hydrogen​ ​→​ ​ethane

17
Q

Distinguish between saturated and unsaturated hydrocarbons:

A

o Unsaturated​ ​=​ ​contain​ ​one​ ​or​ ​more​ ​C=C​ ​double​ ​bonds​ ​e.g.​ ​alkenes
o Saturated​ ​=​ ​contain​ ​no​ ​C=C​ ​double​ ​bonds​ ​e.g.​ ​alkanes

reaction​ ​with​ ​aqueous​ ​bromine:
o Unsaturated​ ​hydrocarbons​ ​react​ ​with​ ​bromine​ ​in​ ​an​ ​addition​ ​reaction, decolourising​ ​it​ ​(​orange​​ ​to​ ​colourless)​ ​–​ ​shown​ ​above​ ​with​ ​the​ ​example of​ ​ethene​ ​reacting​ ​with​ ​bromine
o Saturated​ ​hydrocarbons​ ​do​ ​not​ ​react​ ​with​ ​bromine​ ​and​ ​therefore​ ​the
solution​ ​will​​ ​remain​ ​orange

18
Q

formation of poly(ethene) as an example of addition polymerisation of monomer units

A

● Alkenes​ ​can​ ​be​ ​used​ ​to​ ​make​ ​polymers​ ​such​ ​as​ ​poly(ethene)​ ​by​ ​addition polymerisation.​ ​In​ ​this​ ​reaction,​ ​many​ ​small​ ​molecules​ ​(monomers)​ ​join​ ​together to​ ​create​ ​very​ ​large​ ​molecules​ ​(polymers).

19
Q

manufacture of ethanol by fermentation and by the catalytic addition of steam to ethene

A

● Fermentation:
o The​ ​fermentation​ ​of​ ​glucose
o conditions:​ ​​ ​temperature​ ​of​ ​about​ ​30 ̊C,​ ​anaerobic​ ​conditions​ ​(no​ ​oxygen)
and​ ​using​ ​the​ ​enzymes​ ​in​ ​yeast
o equation:​​ ​glucose​ ​→​ ​ethanol​ ​+​ ​carbon​ ​dioxide
● Steam:
o Reacting​ ​ethene​ ​with​ ​steam
o conditions:​ ​phosphoric​ ​acid​ ​catalyst,​ ​temperature​ ​of​ ​about​ ​300 ̊C​ ​and​ ​a
pressure​ ​of​ ​about​ ​60-70​ ​atm
o equation:​ ​​ethene​ ​+​ ​steam​ ​→​ ​ethanol

20
Q

advantages and disadvantages of these two methods of manufacturing ethanol

A

● Fermentation
o Advantages
▪Renewable​ ​raw​ ​materials, Warm,​ ​normal​ ​pressure​ ​(inexpensive), Little​ ​energy​ ​needed
o Disadvantages
▪ Batch​ ​process​ ​(stop-start), A​ ​lot​ ​of​ ​workers​ ​needed, Slow, Impure​ ​–​ ​needs​ ​treatment
● Steam
o Advantages
▪ Continuous​ ​process​ ​(runs​ ​all​ ​the​ ​time), Few​ ​workers​ ​needed, Fast, Pure
o Disadvantages
▪ Non-renewable​ ​raw​ ​materials, High​ ​temperature​ ​and​ ​pressure​ ​(expensive), A​ ​lot​ ​of​ ​energy​ ​needed

21
Q

properties of ethanol in terms of burning

A

● Burning​ ​in​ ​air​ ​or​ ​oxygen​ ​(complete​ ​combustion) oCH3​C​H2​O​H​​+​​3O​2​​​->​​2CO​2​​​+​​3H2​O​
o Can​ ​be​ ​used​ ​as​ ​a​ ​fuel​ ​in​ ​this​ ​way​ ​(this​ ​reaction​ ​produces​ ​heat​ ​energy) o Burns​ ​in​ ​a​ ​good​ ​supply​ ​of​ ​oxygen

22
Q

Uses of ethanol

A

as a solvent and as a fuel

23
Q

properties of aqueous ethanoic acid

A

● Ethanoic​ ​acid​ ​is​ ​a​ ​member​ ​of​ ​the​ ​carboxylic​ ​acids,​ ​they​ ​have the​ ​functional​ ​group​ ​–COOH.
● First​ ​four​ ​members​ ​are:​ ​methanoic​ ​acid,​ ​ethanoic​ ​acid, propanoic​ ​acid​ ​and​ ​butanoic​ ​acid
-Dissolves in water to produce an acidic solution

24
Q

Formation of ethanoic acid by the oxidation of ethanol by fermentation and with acidified Potassium manganate(VII)

A

● Ethanol​ ​reacts​ ​with​ ​oxygen​ ​in​ ​the​ ​air​ ​to​ ​form​ ​ethanoic​ ​acid​ ​(microbial​ ​oxidation)
● Ethanol​ ​reacts​ ​with​ ​acidified​ ​potassium​ ​manganate(VII)​ ​to​ ​form​ ​ethanoic​ ​acid
(under​ ​reflux)

25
ethanoic acid as a typical weak acid
● A​ ​typical​ ​weak​ ​acid ● this​ ​means​ ​ethanol​ ​will​ ​release​ ​some​ ​H​+​​ ​ions​ ​in​ ​solution,​ ​but​ ​will​ ​not​ ​fully dissociate​ ​(loses​ ​the​ ​H​+​​ ​from​ ​the​ ​COOH​ ​group)
26
reaction of a carboxylic acid with an alcohol in the | presence of a catalyst to give an ester
-Carboxylic​ ​acids​ ​react​ ​with​ ​alcohols​ ​in​ ​the​ ​presence​ ​of​ ​an​ ​acid​ ​catalyst​ ​to produce​ ​esters - ​have​ ​the​ ​functional​ ​group​ ​–COO-. -Name: o first​ ​part​ ​is​ ​from​ ​alcohol​ ​e.g.​ ​methanol​ ​→​ ​methyl o second​ ​part​ ​is​ ​from​ ​carboxylic​ ​acid​ ​e.g.​ ​butanoic​ ​acid→​ ​butanoate
27
Polymers
large molecules built up from small units (monomers)
28
typical uses of • plastics and of man-made fibres such as nylon and Terylene
-Plastics: o Plastic​ ​bags o Clingfilm o Buckets,​ ​other​ ​plastic​ ​tools -Man-made​ ​fibres​ ​such​ ​as​ ​nylon​ ​and​ ​Terylene: o Drawn​ ​into​ ​very​ ​fine​ ​fibres​ ​and​ ​woven​ ​into​ ​cloth​ ​for​ ​clothing o Other​ ​natural​ ​fibres​ ​(e.g.​ ​cotton)​ ​can​ ​be​ ​mixed​ ​with​ ​nylon​ ​or​ ​polyester fibres​ ​to​ ​make​ ​a​ ​soft​ ​but​ ​hard-wearing​ ​cloth
29
differences between condensation and addition polymerisation
- Addition​ ​polymerisation​ ​involves​ ​the​ ​removal​ ​of​ ​a​ ​C=C​ ​double​ ​bond​ ​to​ ​form​ ​a –C-C-​ ​bond,​ ​i.e.​ ​it​ ​joins​ ​up​ ​unsaturated​ ​molecules​ ​to​ ​form​ ​a​ ​long​ ​saturated molecule - Condensation​ ​polymerisation​ ​involves​ ​the​ ​reaction​ ​of​ ​two​ ​different​ ​functional groups​ ​to​ ​form​ ​one​ ​long​ ​molecule​ ​by​ ​the​ ​removal​ ​of​ ​a​ ​small​ ​molecule,​ ​such​ ​as water​ ​H​2O​ - This​ ​means​ ​that​ ​there​ ​can​ ​be​ ​more​ ​than​ ​one​ ​monomer​ ​used​ ​in condensation​ ​polymerisation​ ​(unlike​ ​addition​ ​which​ ​only​ ​uses​ ​one)
30
formation of nylon (a polyamide) and Terylene (a polyester) by condensation polymerisation
...
31
pollution problems caused by non-biodegradable plastics
● Unable​ ​to​ ​biodegrade,​ ​because​ ​the​ ​polymers​ ​that​ ​form​ ​these​ ​plastics​ ​are​ ​inert​ ​/ unable​ ​to​ ​react​ ​therefore,​ ​microorganisms​ ​and​ ​bacteria​ ​are​ ​unable​ ​to​ ​break them​ ​down o Thus,​ ​the​ ​landfills​ ​are​ ​bad​ ​for​ ​the​ ​environment​ ​as​ ​the​ ​plastics​ ​will​ ​remain in​ ​the​ ​ground,​ ​unable​ ​to​ ​break​ ​down/decompose ● They​ ​produce​ ​toxic​ ​gases​ ​when​ ​they​ ​are​ ​burned o Carbon​ ​dioxide​ ​is​ ​also​ ​released​ ​–​ ​which​ ​adds​ ​to​ ​global​ ​warming
32
Proteins and carbohydrates
constituents of food
33
proteins
possessing the same (amide) linkages as nylon but with different units
34
Structure of protein
...
35
hydrolysis of proteins to amino acids.
● Hydrolysis​ ​is​ ​the​ ​splitting​ ​up​ ​of​ ​a​ ​molecule​ ​using​ ​water ● Hydrolysis​ ​of​ ​polymers​ ​results​ ​in​ ​the​ ​formation​ ​of​ ​their​ ​monomers ● In​ ​the​ ​case​ ​of​ ​proteins,​ ​when​ ​you​ ​add​ ​water​ ​to​ ​split​ ​up​ ​this​ ​natural​ ​polymer,​ ​you will​ ​get​ ​amino​ ​acids​ ​(the​ ​monomers​ ​that​ ​form​ ​the​ ​proteins)
36
complex carbohydrates
● A​ ​large​ ​number​ ​of​ ​sugar​ ​units​ ​(diols)​ ​joined​ ​together​ ​by​ ​condensation polymerisation,​ ​e.g.​ ​a​ ​polyester​ ​with​ ​–O-​ ​linkages
37
hydrolysis of complex carbohydrates
● Acids​ ​or​ ​enzymes​ ​to​ ​give​ ​simple​ ​sugars ● similarly​ ​to​ ​proteins,​ ​complex​ ​carbohydrates​ ​can​ ​be​ ​broken​ ​down​ ​into​ ​their monomers​ ​(simple​ ​sugars)​ ​using​ ​water​ ​with​ ​acids/enzymes
38
fermentation of simple sugars to produce ethanol (and carbon dioxide).
● Produce​ ​ethanol​ ​(and​ ​carbon​ ​dioxide) ● sugar​ ​(glucose)​ ​→​ ​ethanol​ ​+​ ​carbon​ ​dioxide ● conditions:​ ​yeast​ ​enzyme,​ ​around​ ​30°C,​ ​anaerobic​ ​conditions​ ​(no​ ​oxygen)
39
usefulness of chromatography in separating and identifying the products of hydrolysis of carbohydrates and proteins
● Chromatography​ ​is​ ​used​ ​to​ ​separate​ ​a​ ​mixture​ ​of​ ​molecules,​ ​therefore​ ​when​ ​you hydrolyse​ ​large​ ​molecules​ ​(polymers)​ ​like​ ​carbohydrates​ ​and​ ​proteins,​ ​you​ ​are left​ ​with​ ​a​ ​mixture​ ​of​ ​their​ ​monomers o Thus,​ ​chromatography​ ​can​ ​be​ ​used​ ​to​ ​separate​ ​and​ ​identify​ ​these monomers​ ​by​ ​their​ ​Rf​ ​values o sugars​ ​and​ ​amino​ ​acids​ ​will​ ​not​ ​produce​ ​visible​ ​spots,​ ​so​ ​once​ ​the chromatogram​ ​is​ ​dry,​ ​you​ ​need​ ​to​ ​spray​ ​it​ ​with​ ​a​ ​locating​ ​agent (Ninhydrin​ ​produces​ ​purple​ ​spots​ ​with​ ​amino​ ​acids​ ​and​ ​resorcinol​ ​makes coloured​ ​spots​ ​with​ ​sugars)