neurotransmittorer Flashcards

1
Q

Type 1 and 2 synapses

A

Type 1 synapse: excitatory. Typically located on the shafts or spines of dendrites. Has round vesicles. Wider synaptic cleft. The material making up presynaptic and postsynaptic membranes is denser. Larger activation zone
Type 2 synapse: inhibitory. Typically located on a cell body. Has flattened synapses.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Glutamatsystemets funktioner

A
  • Important for memory, cognition and mood regulation
  • main neurotransmitter responsible for plasticity(on neuronal level?)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Renshaw loop

A

All motor-neuron axons leaving the spinal cord are cholinergic, and each has an axon collateral within the spinal cord that synapses on a nearby CNS interneuron. The interneuron, in turn, synapses on the motor neuron’s cell body. In a renshaw loop, the main motor neuron projects to a muscle, and its axon collateral remains in the spinal cord synapse with an inhibitory Renshaw interneuron that contains the inhibitory transmitter glycerine. Both main motor axon and its collateral terminals contain ACh. When the motor neuron is highly excited, it modulates its activity level through the renshaw loop - this enables the motor neuron to inhibit itself and not become overexcited in response to excitatory inputs it receives from other parts of the CNS. If the neurotransmitter(amino acid) in the renshaw cell, glycine(gly), is blocked by the toxin strychnine, motor neurons do become overactive - this leads to convulsions that interfere with breathing and thus causing death.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Serotonergic system

A
  • Originating in raphe nuclei(one in the upper brain stem, one in the middle and one in the lower)
  • travels throughout the brain(gissar att dom menar överallt iom att dom inte specificerar?)

Functions:
- Mood regulation
- Regulates sleep cycle
- Contrasts impulsive behavior
- Promotes well-being
- Regulates sexual drive
- Social cognition(makes you more empathetic, make you seek out company of others, make you relate to others more)
- active in maintaining the waking EEG pattern(in the forebrain?)
- plays a role in learning

Serotonin imbalance
Low levels:
* Poor memory and forgetfulness
* Anxiety
* Difficulty falling asleep
* Impulsive behavior
* Craving sweets and starches
* Headaches
* Exhaustion
* Social avoidance
* related to depression

High levels:
* Tremor
* Hyperthermia
* Sweating
* Agitation
* Confusion
* Hallucinations
* related to OCD and schizophrenia

IDK om höga eller låga nivåer:
* Abnormalities in brain stem 5HT neurons are linked to disorders such as sleep apnea and SIDS
* relaterat till tics

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Dopamine imbalance symptoms(high levels and low levels)

A

Both motor symptoms, cognitive symptoms, behavioral symptoms.
Low levels:
* muscle spasms
* Tremor
* Trouble keeping balance
* Lack of focus or concentration
* Low energy
* Lack of motivation
* Fatigue
* Low mode

High levels:
* Repetitive tics
* psychosis
* Hypersexuality
* Gambling
* Impulsive behavior
* Aggressive tendencies
* Nausea

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Mesolimbic pathways

A
  • originating in ventral tegmentum
  • axons travel down the brain stem, to the cerebellum, to the frontal cortex and to nucleus accumbens in the basal ganglia
  • dopamine release causes feelings of reward and pleasure
  • through to be the system most affected by addictive drugs and behavioral addiction
  • increases in DA activity might be related to schizophrenia
  • decreases in DA activity might be related to attention deficits
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Vilka 3 pathways finns i det dopaminerga systemet(och vad är deras primära funktioner)?

A

Mesolimbic - belöning, njutning
Mesocortical - Kognition, minne, uppmärksamhet, känslomässiga beteenden och inlärning
Nigrostriatal - Rörelse och sensorisk stimuli

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Nigrostriatal pathways

A
  • originating in nuclei in substantia nigra
  • axons go to caudate nucleus(a part of the striatum, the largest structure in the basal ganglia)
    *active in maintaining normal motor behavior
  • loss in DA related to muscle rigidity and akinesia in parkinsons
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

GABA SYSTEMET

A

Functions:
* Reduce neuronal excitability by inhibiting nerve transmission
* Relaxing effect in brain and peripheral nervous system
* Affects mood, Mental health.
Main purpose: relax after stress.

Low levels:
* Anxiety
* Depression
* Insomnia
* Mood disorders
* Risk for convulsions and seizures(bc the brain is more excitable)

High levels:
* Sleep apnea(bc inhibitory effect on respiratory system)
* Drowsiness
* Daytime sleepiness

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Which neurotransmitter is the main excitatory neurotransmitter in the CNS and which one is the main inhibitory one?

A

Excitatory - glutamate
Inhibitory - GABA

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Noradrenerga systemet

A

*originating from locus coeruleus(upper part of brain stem)
* axons travel down the brain stem, into the cerebellum up around the corpus callosum to the rest of the brain, and to the thalamus.

Function - Mobilize brain and body for action:
* fight or flight
* Stress response in general
* Arousal
* Alertness
* Vigilance
* Attention
* Memory formation(u need to learn and retain information from dangerous situations)
* may also facilitate normal brain development and play a role in organizing movements and learning, by stimulating neuronal plasticity
* active in maintaining emotional tone.

Noradrenaline imbalance
Low levels:
* Lack of focus/energy/motivation
* Decreased mood
* Decreases in NE activity thought to be related to depression
* Decreases in NE activity thought to be related to ADHD

High level:
* stress and anxiousness
* hyperactivity
* headache
* increased blood pressure
* Hot flashes
* Anger
* Weight management issue(both underweight and overweight)
* Increased NA activity thought to be related to mania

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Vilka två neurotransmittorer är starkast kopplade till de två autonoma systemen?

A

Sympatiska: NE
Parasympatiska: ACh

Both ANS divisions(sympathetic and parasympathetic) are controlled by cholinergic neurons that emanate from the CNS at two levels of the spinal cord. The CNS neurons synapse with parasympathetic neurons that contain ACh and with sympathetic neurons that contain NE.
Whether ACh synapses or NE synapses are excitatory or inhibitory on a particular body organ depends on that organs receptors:
- NE receptors on heart are excitatory(turns up heart rate)
- NE receptors on gut are inhibitory(turns down digestion)
- Opposite true for ACh receptors

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Vad är de experimentella kriterierna för en neurotransmittor?

A
  1. The chemical must be synthesized in the neuron or must otherwise be present in it
  2. When the neuron is active, the chemical must be released and produce a response in some target cell
  3. The same response(receptor action) must be obtained when the chemical is experimentally placed on target
  4. A mechanism must exist for deactivating or removing a chemical from its site of action after its work is done
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

In which 2 ways can metabotropic receptors inhibit the firing of an action potential?

A
  • metabotropic receptors are usually inhibitory
    Works in 2 different ways.
    A (metabotropic receptor coupled to an ion channel)
    1. Transmitter binds to binding site
    2. This triggers the activation of a G protein
    3. The alpha subunit of the G protein binds to a channel, causing a structural change in the channel that allows ions to pass through it
    B (metabotropic receptor coupled to an enzyme)
    1. Transmitter binds to binding site
    2. This triggers the activation of a G protein
    3. The alpha-subunit binds to an enzyme, which activates a second messenger
    4. The second messenger can activate other cell processes
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

3 exempel på vad en second messenger kan göra

A

*bind to membrane channels causing the channel to change its structure and thus alter ion flow
* initiate reaction that incorporates protein molecules within the cell into the cell membrane, for example, resulting in formation of new ion channels
* influence cell’s DNA to initiate or cease gene expression and thus regulate protein formation

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Vilka funktioner har det kolinerga systemet och vad är symtomen vid för låga respektive för höga nivåer av acetylkolin?

A

Functions:
- Enhances cognition - attention, memory, learning
- Arousal
- Muscle
- bridge nerve impulses and muscles being used
Peripheral effects:
Parasympathetic

Cholinergic imbalance:
Low levels:
* delusion
* confusion
* memory impairment
* difficult in learning

High levels:
* Headache
* insomnia
* confusion
* drowsiness
* Slurred speech
* Convulsions, coma, and respiratory depression if severe

17
Q

Vad är aminer? Och ge några exempel på aminer

A

Chemicals that contain an amine group, NH, in their chemical structure.
Exempel på aminer: Dopamine, norepinephrine, epinephrine, serotonin.
Some amine transmitters are synthesized by common biochemical pathways and so are related to one another(t.ex monoaminer: dopamin, serotonin, noradrenalin)

18
Q

Säg 4 sätt som neurotransmittorer “försvinner” efter dom har gjort sin grej

A
  1. Diffusion - simply diffuses away from the synaptic cleft and is no longer available to bind to receptors.
  2. Degradation - enzymes in the cleft break down the neurotransmitter
  3. Reuptake - transporter proteins specific to that transmitter may bring the transmitter back into the presynaptic amazon terminal for reuse. The by-products of degradation by enzymes also may be taken back into the terminal and be reused in the cell.
  4. Glial storage - neighboring glial cells take up the neurotransmitter. Glial cells can also store transmitters for potential reexport to the axon terminal.
19
Q

Vilka 3 typer av neurotransmittorer kan man dela in i baserat på kemisk komposition? Beskriv kort varje typ och ge några exempel på neurotransmittorer som tillhör typen

A
  1. Small-molecule transmitters
    - Quick-acting. When released it can quickly be replaced at the presynaptic membrane. Typically synthesized from dietary nutrients and packaged in axon terminals. Thus diet can influence their levels and activity.
    Exempel: ACh, anandamide, amino acids(GABA, glutamate, glycine, histamine), monoamines, trace amines and catecholamines
  2. Peptide transmitters
    - Amino acids link together by peptide bonds to form chains - neuropeptides. Made through the translation of mRNA from instructions in the neuron’s DNA. In some neurons they are produced in the axon terminal, but most are assembled on the cell’s ribosomes, packaged inside a membrane by golgi bodies, and transported on the microtubule highway to the axon terminals.
    - Their synthesis and transport is relatively slow compared to small-molecule transmitters:
    Neuropeptides form slowly and are not replaced quickly.
    Exempel: Opioids (enkephaline, dynorphin), Neurohypophyseals (vasopressin, oxytocin), Secretins (Gastric inhibitory peptide, growth-hormone-releasing peptide), Insulins (insulin, insulin growth factors), Gastrins (gastrin, cholecystokinin), Somatostatins (pancreatic polypeptides), Corticosteroids (glucocorticoids, mineralocorticoids)
  3. Transmitter gasses
    - Water soluble, Synthesized in the cell as needed(not stored in vesicles), Produced in many regions of a neuron, including the dendrites.
    On synthesis, the gas diffuses away from the site where it was made, easily crossing the cell membrane and immediately becoming active
    Exempel: Nitric oxide(NO), Carbon monoxide(CO), Hydrogen sulfide(H2S)
20
Q

ge 3 exempel på hur hjärnans plasticitet kan stimuleras efter skada

A

Farmakologisk terapi - psykoaktiva droger, amfetamin, nikotin, cannabis, antidepressiva mediciner (SSRI) - stimulerar plastiska förändringar i hjärnan.
Aktiv Baserad terapi - Att använda den del av kroppen som är nedsatt och att motverka kompensation.
Kognitiv rehabilitering, träna kognitiva funktioner (uppmärksamhet) via datoriserade program (arbetsminne, uppmärksamhet)
Musik och andra beteendeterapier, att lyssna och spela musik stimulerar hjärnan generellt och har visad effekt i flera olika sammanhang.

21
Q

Vad som sker när man lär sig nåt nytt och sen när du inte ägnat dig åt den färdigheten på länge

A

Inlärning och nya upplevelser stärker underliggande neuronala kopplingar -
kopplingar som sällan används tillbakabildas och ”dör”. Naturlig process under
hjärnans tidiga utveckling (”neuronal pruning”)

Synapserna stärks via LTP, bildas fler axoner, dendriter, gliaceller, mer myelin. det leder till att de neural pathways associerade med färdigheten stärks och kan aktiveras enklare och snabbare. Även neurogenes i vuxen ålder sker(framförallt i hippocampus och subventrikulära zonen).

När du slutar använda färdigheten försvagas synapserna(LTD), synaptic pruning etc gör att nervbanorna associerade med färdigheten är svårare att aktivera o långsammare typ

22
Q

Neuroplasticitet + 3 exempel

A

Neuroplasticitet uppstår som ett resultat av upplevelser inlärning, minnesbildning eller skada. Vid minne och inlärning skapas nya kopplingar mellan neuroner o kopplingarna förstärks. hjärnans funktioner kan också omorganiseras vid t.ex skador

*Hjärnan kan flytta funktion från ett område av hjärnan efter
en skada, till andra områden som inte är skadade
Existerande nätverk som är inaktiva eller används för annat tar över funktion som
gått förlorad på grund av skadan(funktionell plasticitet)
* Förstärkning/försvagning av synapser
* tillväxt(eller borttvinande) av kopplingar

23
Q

4 nivåer som plasticitet kan analyseras på

A
  1. Beteendeförändring: Den observerbara och synliga aspekten av hjärnplasticitet. Det är
    något vi upplever. Inkluderar inlärning av ny information och minnesbildning. När vi lär oss
    något nytt förändras vårt beteende och våra förmågor.
  2. Hjärnans struktur: Strukturella förändringar i hjärnan är ett biologiskt underlag för
    beteendeförändringar. Ökad hjärnaktivitet vid inlärning och övning leder till förändringar i
    hjärnans volym.
  3. Cellers funktion och sampel: Förändringar i nervcellers funktion och samspel är vidare ett
    underlag för volymförändringar i hjärnan vid beteendeförändringar. När vi lär oss och tränar
    våra färdigheter sker justeringar i hur nervceller kommunicerar och samarbetar med
    varandra.
  4. Nybildning av nervceller: Hjärnan har även en förmåga att skapa nya nervceller (process
    som kallas neurogenes), vilket ytterligare är ett biologiskt underlag för volymförändringar
    och beteendeförändringar därtill.